Codeforces gym 101102 K 想法

时间:2022-01-05 17:09:32

Topological Sort
time limit per test
8 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Consider a directed graph G of N nodes and all edges (uv) such that u < v. It is clear that this graph doesn’t contain any cycles.

Your task is to find the lexicographically largest topological sort of the graph after removing a given list of edges.

A topological sort of a directed graph is a sequence that contains all nodes from 1 to N in some order such that each node appears in the sequence before all nodes reachable from it.

Input

The first line of input contains a single integer T, the number of test cases.

The first line of each test case contains two integers N and M (1 ≤ N ≤ 105) Codeforces gym 101102 K 想法, the number of nodes and the number of edges to be removed, respectively.

Each of the next M lines contains two integers a and b (1 ≤ a < b ≤ N), and represents an edge that should be removed from the graph.

No edge will appear in the list more than once.

Output

For each test case, print N space-separated integers that represent the lexicographically largest topological sort of the graph after removing the given list of edges.

Example
input
3
3 2
1 3
2 3
4 0
4 2
1 2
1 3
output
3 1 2
1 2 3 4
2 3 1 4

题意:给你一个完全图  只有从小标号到大标号的边  删去m条边  求字典序最大的拓扑排序


题解:set搞一搞。。。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<vector>
using namespace std;
struct node{
	int num,lab;
	bool operator <(const node& a)const{
		if(num==a.num)return lab>a.lab;
		return num<a.num;
	}
}edge[100005];
vector<int>sp[100005];
set<node>sps;
int der[100005];
int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		int n,m,i,j,x,y;
		scanf("%d%d",&n,&m);
		sps.clear();
		for(i=1;i<=n;i++){
			sp[i].clear();
			der[i]=i-1;
		}
		for(i=1;i<=m;i++){
			scanf("%d%d",&x,&y);
			sp[x].push_back(y);
			sp[y].push_back(x);
			der[y]--;
		}
		for(i=1;i<=n;i++){
			sps.insert((node){der[i],i});
		}
		for(i=1;i<=n;i++){
			node f=*sps.begin();
			sps.erase(sps.begin());
			printf("%d ",f.lab);
			for(j=0;j<sp[f.lab].size();j++){
				int du=der[sp[f.lab][j]]++;
				if(sps.erase((node){du,sp[f.lab][j]}))sps.insert((node){du+1,sp[f.lab][j]});
			}
		}
		printf("\n");
	}
	return 0;
}