d1.count() #非空元素计算
d1.min() #最小值
d1.max() #最大值
d1.idxmin() #最小值的位置,类似于R中的which.min函数
d1.idxmax() #最大值的位置,类似于R中的which.max函数
d1.quantile(0.1) #10%分位数
d1.sum() #求和
d1.mean() #均值
d1.median() #中位数
d1.mode() #众数
d1.var() #方差
d1.std() #标准差
d1.mad() #平均绝对偏差
d1.skew() #偏度
d1.kurt() #峰度
d1.describe() #一次性输出多个描述性统计指标
关于相关系数的计算可以调用pearson方法或kendell方法或spearman方法,默认使用pearson方法。计算的是任意两列的相关系数。
df.corr()
如果只想关注某一个变量与其余变量的相关系数的话,可以使用corrwith,如下方只关心x1与其余变量的相关系数:
df.corrwith(df['x1'])
数值型变量间的协方差矩阵
df.cov()