不要二(最大化填充)

时间:2022-07-15 16:51:54

题目描述

二货小易有一个W*H的网格盒子,网格的行编号为0~H-1,网格的列编号为0~W-1。每个格子至多可以放一块蛋糕,任意两块蛋糕的欧几里得距离不能等于2。
对于两个格子坐标(x1,y1),(x2,y2)的欧几里得距离为:
( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) 的算术平方根
小易想知道最多可以放多少块蛋糕在网格盒子里。

输入描述:

每组数组包含网格长宽W,H,用空格分割.(1 ≤ W、H ≤ 1000)

输出描述:

输出一个最多可以放的蛋糕数

 

示例1

输入

3 2

输出

4

分析

最大化填充如图所示 

      不要二(最大化填充)

每4*4的格子里可以放8个,然后计算不足4个格子的部分(上图中的蓝色区域,橙色区域和黄色区域)

w,h = map(int,raw_input().strip().split())
w1
= w/4
w2
= w%4
h1
= h/4
h2
= h%4

cnt
= 0
cnt
+= w1*h1*8
cnt
+= w2*(h1*4)/2
cnt
+= h2*w1*4/2
if w2 <= 2 and h2 <= 2:
cnt
+= w2*h2
elif w2 == 3 and h2 == 3:
cnt
+= 5
elif w2 <= 2 and h2 == 3:
cnt
+= w2*2
elif h2 <= 2 and w2 == 3:
cnt
+= h2*2
print(cnt)