思路:
虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做...
当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k。设ans[i]是1~i-1与i的GCD之和,所以最终答案是将ans[0]一直加到ans[n]。当 k*i==j 时,ans[j]=k*euler[i]。
看完题解瞬间领悟:神奇海螺
突然忘记欧拉函数是什么:欧拉函数
代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack>
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
const int N=4000005;
const int M=4000000;
const int MOD=1000;
using namespace std;
ll ans[N];
ll euler[N];
void get(){
memset(ans,0,sizeof(ans));
for(int i=1;i<=M;i++){
euler[i]=i;
}
for(int i=2;i<=M;i++){
if(euler[i]==i){ //i是质数
for(int j=i;j<=M;j+=i){
euler[j]=euler[j]/i*(i-1);
}
} //得到与i互质的个数
for(int k=1;k*i<=M;k++){
ans[k*i]+=k*euler[i];
}
}
for(int i=2;i<=M;i++){
ans[i]+=ans[i-1];
}
}
int main(){
get();
int T,num=1,n;
while(~scanf("%d",&n) && n){
printf("%lld\n",ans[n]);
}
return 0;
}