loj 1429(可相交的最小路径覆盖)

时间:2021-05-27 16:50:09

题目链接:http://lightoj.com/volume_showproblem.php?problem=1429

思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问题,可以先染色缩点重建图,然后就是如何来处理这个路径可以相交这个问题,这里可以用bfs求出任意两点之间是否可达,如果可达,就连边,然后就是HK算法求最大匹配了,最小路径覆盖 = 顶点数 - 最大匹配。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
using namespace std; const int MAXN = ( + );
const int MAXM = ( + );
int n, m;
int cnt, scc_count;
bool Instack[MAXN];
int low[MAXN], dfn[MAXN], color[MAXN];
vector<int > g[MAXN];
stack<int > S; void Tarjan(int u)
{
low[u] = dfn[u] = ++cnt;
Instack[u] = true;
S.push(u);
for (int i = ; i < (int)g[u].size(); i++) {
int v = g[u][i];
if (dfn[v] == ) {
Tarjan(v);
low[u] = min(low[u], low[v]);
} else if (Instack[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]) {
scc_count++;
int v;
do {
v = S.top();
S.pop();
Instack[v] = false;
color[v] = scc_count;
} while (u != v);
}
} bool Isok[MAXN][MAXN];
bool mark[MAXN];
vector<int > reg[MAXN]; void bfs(int st)
{
memset(mark, false, sizeof(mark));
queue<int >que;
que.push(st);
mark[st] = true;
while (!que.empty()) {
int u = que.front();
que.pop();
for (int i = ; i < (int)reg[u].size(); i++) {
int v = reg[u][i];
if (!mark[v]) {
mark[v] = true;
que.push(v);
}
}
}
} void Build()
{
for (int i = ; i <= scc_count; i++) {
reg[i].clear();
}
for (int i = ; i <= scc_count; i++) {
for (int j = ; j <= scc_count; j++) {
if (i != j && Isok[i][j]) {
reg[i].push_back(j);
}
}
}
} int lx[MAXN], ly[MAXN];
int distx[MAXN], disty[MAXN]; bool MaxMatch_bfs()
{
bool flag = false;
memset(distx, , sizeof(distx));
memset(disty, , sizeof(disty));
queue<int > que;
for (int i = ; i <= scc_count; i++) {
if (lx[i] == -) que.push(i);
}
while (!que.empty()) {
int u = que.front();
que.pop();
for (int i = ; i < (int)reg[u].size(); i++) {
int v = reg[u][i];
if (disty[v] == ) {
disty[v] = distx[u] + ;
if (ly[v] == -) flag = true;
else {
distx[ly[v]] = disty[v] + ;
que.push(ly[v]);
}
}
}
}
return flag;
} int dfs(int u)
{
for (int i = ; i < (int)reg[u].size(); i++) {
int v = reg[u][i];
if (disty[v] == distx[u] + ) {
disty[v] = ;
if (ly[v] == - || dfs(ly[v])) {
ly[v] = u;
lx[u] = v;
return ;
}
}
}
return ;
} int MaxMatch()
{
memset(lx, -, sizeof(lx));
memset(ly, -, sizeof(ly));
int res = ;
while (MaxMatch_bfs()) {
for (int i = ; i <= scc_count; i++) {
if (lx[i] == -) res += dfs(i);
}
}
return res;
} int main()
{
int _case, t = ;
scanf("%d", &_case);
while (_case--) {
scanf("%d %d", &n, &m);
for (int i = ; i <= n; i++) {
g[i].clear();
reg[i].clear();
}
while (m--) {
int u, v;
scanf("%d %d", &u, &v);
g[u].push_back(v);
}
//强联通缩点重建图
cnt = scc_count = ;
memset(dfn, , sizeof(dfn));
for (int i = ; i <= n; i++) {
if (dfn[i] == ) Tarjan(i);
}
for (int u = ; u <= n; u++) {
for (int i = ; i < (int)g[u].size(); i++) {
int v = g[u][i];
if (color[u] != color[v]) {
reg[color[u]].push_back(color[v]);
}
}
}
//bfs求出新图中的任意两点之间是否可达
memset(Isok, false, sizeof(Isok));
for (int i = ; i <= scc_count; i++) {
bfs(i);
for (int j = ; j <= scc_count; j++) {
if (mark[j]) {
Isok[i][j] = true;
}
}
}
//对于那些可达的点重新连边
Build();
//bfs求解最大匹配;
//最小路径覆盖 = 顶点数 - 最大匹配数
int ans = MaxMatch();
printf("Case %d: %d\n", t++, scc_count- ans);
}
return ;
}