08-图8 How Long Does It Take(25 分)邻接表和队列

时间:2021-01-14 16:46:54

Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i-th activity, three non-negative numbers are given: S[i], E[i], and L[i], where S[i] is the index of the starting check point, E[i] of the ending check point, and L[i] the lasting time of the activity. The numbers in a line are separated by a space.

Output Specification:

For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".

Sample Input 1:

9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4

Sample Output 1:

18

Sample Input 2:

4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5

Sample Output 2:

Impossible

我的答案
 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h> #define ERROR -1
#define false 0
#define true 1
#define MaxVertexNum 100
#define INFINITY 65535
#define MaxQueue 100
typedef int Vertex;
typedef int WeightType;
typedef int bool; //边
typedef struct ENode *PtrToENode;
struct ENode {
Vertex V1, V2;
WeightType Weight;
};
typedef PtrToENode Edge; //邻接点
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode {
Vertex AdjV; //下标
WeightType Weight; //边权重
PtrToAdjVNode Next; //指向下一个邻接点
}; //顶点
typedef struct VNode {
PtrToAdjVNode FirstEdge; //边表头指针
// DataType Data; //存顶点的户数据
}AdjList[MaxVertexNum]; //图结点
typedef struct GNode *PtrToGNode;
struct GNode {
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph; struct QNode {
Vertex Data[MaxQueue];
int rear;
int front;
};
typedef struct QNode *Queue; int IsEmptyQ(Queue PtrQ)
{
return (PtrQ->front == PtrQ->rear);
} void AddQ(Queue PtrQ, Vertex item)
{
if((PtrQ->rear+)%MaxQueue == PtrQ->front) {
printf("Queue full");
return;
}
PtrQ->rear = (PtrQ->rear+)%MaxQueue;
PtrQ->Data[PtrQ->rear] = item;
} Vertex DeleteQ(Queue PtrQ)
{
if(PtrQ->front == PtrQ->rear) {
printf("Queue Empty");
return -;
} else {
PtrQ->front = (PtrQ->front+)%MaxQueue;
return PtrQ->Data[PtrQ->front];
}
} LGraph CreateGraph(int VertexNum)
{
Vertex V;
LGraph Graph; Graph = (LGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = ; for(V=;V<Graph->Nv;V++)
Graph->G[V].FirstEdge = NULL; return Graph;
} void InsertEdge(LGraph Graph, Edge E)
{
PtrToAdjVNode NewNode; //有向边
NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V2;
NewNode->Weight = E->Weight;
//向V1插入V2
NewNode->Next = Graph->G[E->V1].FirstEdge;
Graph->G[E->V1].FirstEdge = NewNode;
} LGraph BuildGraph()
{
LGraph Graph;
Edge E;
int Nv, i; scanf("%d", &Nv);
Graph = CreateGraph(Nv); scanf(" %d\n", &(Graph->Ne));
if(Graph->Ne != ) {
E = (Edge)malloc(sizeof(struct ENode));
for(i=;i<Graph->Ne;i++) {
scanf("%d %d %d\n", &E->V1, &E->V2, &E->Weight);
InsertEdge(Graph, E);
}
} return Graph;
} void PrintGraph(LGraph Graph)
{
Vertex V;
PtrToAdjVNode W;
for(V=;V<Graph->Nv;V++) {
printf("%d:", V);
for(W=Graph->G[V].FirstEdge;W;W=W->Next) {
printf("[%3d %3d] ", W->AdjV, W->Weight);
}
printf("\n");
}
} /* 邻接表存储 - 拓扑排序算法 */
bool TopSort( LGraph Graph, Vertex TopOrder[], Vertex Earliest[])
{ /* 对Graph进行拓扑排序, TopOrder[]顺序存储排序后的顶点下标 */
int Indegree[MaxVertexNum], cnt;
Vertex V;
PtrToAdjVNode W; Queue Q = (Queue)malloc(sizeof(struct QNode)*( Graph->Nv )); /* 初始化Indegree[] */
for (V=; V<Graph->Nv; V++)
Indegree[V] = ; /* 遍历图,得到Indegree[] */
for (V=; V<Graph->Nv; V++)
for (W=Graph->G[V].FirstEdge; W; W=W->Next)
Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */ /* 将所有入度为0的顶点入列 */
for (V=; V<Graph->Nv; V++)
if ( Indegree[V]== ) {
AddQ(Q, V);
Earliest[V] = ; //起点为0
} /* 下面进入拓扑排序 */
cnt = ;
while( !IsEmptyQ(Q) ){
V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
/* 对V的每个邻接点W->AdjV */
for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
if ( --Indegree[W->AdjV] == ) {/* 若删除V使得W->AdjV入度为0 */
AddQ(Q, W->AdjV); /* 则该顶点入列 */
Earliest[W->AdjV] = Earliest[V] + W->Weight;
// if((Earliest[V]+W->Weight)>Earliest[W->AdjV] && Earliest[W->AdjV])
// Earliest[W->AdjV] = Earliest[V] + W->Weight;
}
} /* while结束*/ if ( cnt != Graph->Nv )
return false; /* 说明图中有回路, 返回不成功标志 */
else
return true;
} int main()
{
LGraph Graph;
WeightType Earliest[MaxVertexNum];
Vertex TopOrder[MaxVertexNum],V;
int ret; Graph = BuildGraph();
// PrintGraph(Graph);
ret = TopSort(Graph, TopOrder, Earliest);
if(ret == false) {
printf("Impossible");
} else if(ret == true) {
int max = Earliest[];
for(int i=;i<Graph->Nv;i++) {
// printf("%d: [%d]\n", i, Earliest[i]);
if(max < Earliest[i])
max = Earliest[i];
}
printf("%d", max);
}
// printf("TopOrder:");
// for(V=0;V<Graph->Nv;V++)
// printf("%d ", TopOrder[V]);
// printf("\n");
return ;
}