from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.master("local") \
.enableHiveSupport() \
.getOrCreate()
#try:
result = spark.sql("select * from dev.dev_jiadian_user_yuge limit 10")
#result.collect()
result.show()
#finally:
# spark.stop()
#print "ends..." +----------------+------------------+
| user_log_acct| label|
+----------------+------------------+
| 342523ZMD003|0.8407951425388679|
| 流行你的时尚潮流|0.8156848188447681|
| a564494278|0.8128615895945835|
|jd_6381a0e5b63b5|0.7818056689527976|
| weixiong07_m|0.7807439055758115|
|jd_56a7706a16617|0.7531679395767472|
| long4868632|0.7504257196976702|
| huanyi25| 0.745658097419349|
| 雪域翔鹰163|0.7359140647098181|
| wjl368|0.7340991987507084|
+----------------+------------------+ result
result.take(5)
[Row(user_log_acct=u'342523ZMD003', label=0.8407951425388679),
Row(user_log_acct=u'\u6d41\u884c\u4f60\u7684\u65f6\u5c1a\u6f6e\u6d41', label=0.8156848188447681),
Row(user_log_acct=u'a564494278', label=0.8128615895945835),
Row(user_log_acct=u'jd_6381a0e5b63b5', label=0.7818056689527976),
Row(user_log_acct=u'weixiong07_m', label=0.7807439055758115)] df
import pandas as pd
x = pd.DataFrame(result.take(5), columns=result.columns) x
user_log_acct label
0 342523ZMD003 0.840795
1 流行你的时尚潮流 0.815685
2 a564494278 0.812862
3 jd_6381a0e5b63b5 0.781806
4 weixiong07_m 0.780744