lucene底层数据结构——FST,针对field使用列存储,delta encode压缩doc ids数组,LZ4压缩算法

时间:2021-06-15 16:35:18

参考:

http://www.slideshare.net/lucenerevolution/what-is-inaluceneagrandfinal

http://www.slideshare.net/jpountz/how-does-lucene-store-your-data

http://www.infoq.com/cn/articles/database-timestamp-02?utm_source=infoq&utm_medium=related_content_link&utm_campaign=relatedContent_articles_clk

摘录一些重要的:

看一下Lucene的倒排索引是怎么构成的。

lucene底层数据结构——FST,针对field使用列存储,delta encode压缩doc ids数组,LZ4压缩算法

我们来看一个实际的例子,假设有如下的数据:

docid

年龄

性别

1

18

2

20

3

18

 

这里每一行是一个document。每个document都有一个docid。那么给这些document建立的倒排索引就是:

年龄

18

[1,3]

20

[2]

性别

[1,2]

[3]

可以看到,倒排索引是per field的,一个字段有一个自己的倒排索引。18,20这些叫做 term,而[1,3]就是posting list。Posting list就是一个int的数组,存储了所有符合某个term的文档id。那么什么是term dictionary 和 term index?

那么什么是term dictionary 和 term index?

假设我们有很多个term,比如:

Carla,Sara,Elin,Ada,Patty,Kate,Selena

如果按照这样的顺序排列,找出某个特定的term一定很慢,因为term没有排序,需要全部过滤一遍才能找出特定的term。排序之后就变成了:

Ada,Carla,Elin,Kate,Patty,Sara,Selena

这样我们可以用二分查找的方式,比全遍历更快地找出目标的term。这个就是 term dictionary。有了term dictionary之后,可以用 logN 次磁盘查找得到目标。但是磁盘的随机读操作仍然是非常昂贵的(一次random access大概需要10ms的时间)。所以尽量少的读磁盘,有必要把一些数据缓存到内存里。但是整个term dictionary本身又太大了,无法完整地放到内存里。于是就有了term index。term index有点像一本字典的大的章节表。比如:

A开头的term ……………. Xxx页

C开头的term ……………. Xxx页

E开头的term ……………. Xxx页

如果所有的term都是英文字符的话,可能这个term index就真的是26个英文字符表构成的了。但是实际的情况是,term未必都是英文字符,term可以是任意的byte数组。而且26个英文字符也未必是每一个字符都有均等的term,比如x字符开头的term可能一个都没有,而s开头的term又特别多。实际的term index是一棵trie 树:

lucene底层数据结构——FST,针对field使用列存储,delta encode压缩doc ids数组,LZ4压缩算法

例子是一个包含 "A", "to", "tea", "ted", "ten", "i", "in", 和 "inn" 的 trie 树。这棵树不会包含所有的term,它包含的是term的一些前缀。通过term index可以快速地定位到term dictionary的某个offset,然后从这个位置再往后顺序查找。再加上一些压缩技术(搜索 Lucene Finite State Transducers) term index 的尺寸可以只有所有term的尺寸的几十分之一,使得用内存缓存整个term index变成可能。整体上来说就是这样的效果。

lucene底层数据结构——FST,针对field使用列存储,delta encode压缩doc ids数组,LZ4压缩算法

现在我们可以回答“为什么Elasticsearch/Lucene检索可以比mysql快了。Mysql只有term dictionary这一层,是以b-tree排序的方式存储在磁盘上的。检索一个term需要若干次的random access的磁盘操作。而Lucene在term dictionary的基础上添加了term index来加速检索,term index以树的形式缓存在内存中。从term index查到对应的term dictionary的block位置之后,再去磁盘上找term,大大减少了磁盘的random access次数。

额外值得一提的两点是:term index在内存中是以FST(finite state transducers)的形式保存的,其特点是非常节省内存。Term dictionary在磁盘上是以分block的方式保存的,一个block内部利用公共前缀压缩,比如都是Ab开头的单词就可以把Ab省去。这样term dictionary可以比b-tree更节约磁盘空间。

--------------------------------------------------------

lucene并非使用Tree structure
– sorted for range queries
– O(log(n)) search

而是如下核心的数据结构,FST,delta encode压缩数组,列存储,LZ4压缩算法:
●Terms index: map a term prefix to a block in the dict ○ FST: automaton with weighted arcs, compact thanks to shared prefixes/suffixes 核心数据结构,本质是前后缀共享的状态机,类似trie来搜索用户输入的某个单词是否能搜到,搜到的话就跳转到Terms dictionary里去,搜到的结果是单词在terms dict里的offset(本质是数组的偏移量)
Lookup the term in the terms index
– In-memory FST storing terms prefixes
– Gives the offset to look at in the terms dictionary
– Can fast-fail if no terms have this prefix
●Terms dictionary: statistics + pointer in postings lists, Store terms and documents in arrays – binary search
• Jump to the given offset in the terms dictionary
– compressed based on shared prefixes, similarly to a burst trie
– called the “BlockTree terms dict”
• read sequentially until the term is found
●Postings lists: encodes matching docs in sorted order ○ + positions + offsets 倒排的文档ID都在此
• Jump to the given offset in the postings lists
• Encoded using modified FOR (Frame of Reference) delta
– 1. delta-encode
– 2. split into block of N=128 values
– 3. bit packing per block
– 4. if remaining docs, encode with vInt
●Stored fields
• In-memory index for a subset of the doc ids
– memory-efficient thanks to monotonic compression
– searched using binary search
• Stored fields
– stored sequentially
– compressed (LZ4) in 16+KB blocks

Query execution:
• 2 disk seeks per field for search
• 1 disk seek per doc for stored fields
• It is common that the terms dict / postings lists fits into the file-system cache
• “Pulse” optimization
– For unique terms (freq=1), postings are inlined in the terms dict
– Only 1 disk seek
– Will always be used for your primary keys

插入新数据:
Insertion = write a new segment 一直写信segment可以防止使用锁
• Merge segments when there are too many of them
– concatenate docs, merge terms dicts and postings lists (merge sort!)
删除:
Deletion = turn a bit off
• Ignore deleted documents when searching and merging (reclaims space)
• Merge policies favor segments with many deletions

优缺点:
Updates require writing a new segment
– single-doc updates are costly, bulk updates preferred
– writes are sequential
• Segments are never modified in place
– filesystem-cache-friendly
– lock-free!
• Terms are deduplicated
– saves space for high-freq terms
• Docs are uniquely identified by an ord
– useful for cross-API communication
– Lucene can use several indexes in a single query
• Terms are uniquely identified by an ord
– important for sorting: compare longs, not strings
– important for faceting (more on this later)

针对field使用列存储:
Per doc and per field single numeric values, stored in a column-stride fashion
• Useful for sorting and custom scoring
• Norms are numeric doc values

一些设计原则:
• Save file handles
– don’t use one file per field or per doc
• Avoid disk seeks whenever possible
– disk seek on spinning disk is ~10 ms
• BUT don’t ignore the filesystem cache
– random access in small files is fine
• Light compression helps
– less I/O
– smaller indexes
– filesystem-cache-friendly

针对Compression techniques的数据结构:FSTs LZ4