浅谈splay(点的操作)
一、基本概念
splay本质:二叉查找树
特点:结点x的左子树权值都小于x的权值,右子树权值都大于x的权值
维护信息:
整棵树:root 当前根节点 sz书上所有结点编号
结点:f[] 父节点编号 ch[][2] 孩子结点编号,0左1右
siz[] 以结点为根的子树大小(包括自己) cnt[]自己出现的次数
key[] 结点权值
二、基本操作
插入insert、删除del、查询x的排名findpos、查询排名为x的数findx、查找前驱pre、查找后继nex
核心操作:伸展操作splay
part 1:这么多操作难免会更改节点信息,我们先思考如何维护这些信息
siz,cnt 可以这样维护
void update(int x)
{
siz[x]=cnt[x];
if(ch[x][]) siz[x]+=siz[ch[x][]];
if(ch[x][]) siz[x]+=siz[ch[x][]];
}
f,ch,root 要在splay操作中修改
splay操作:就是讲结点x不断旋转至根节点
旋转过程谁成为谁的左右孩子,自己根据大小关系判断总结即可
旋转代码:
int getson(int x)
{
return ch[f[x]][]==x;
}
void rotate(int x)
{
int fa=f[x],fafa=f[fa],k=getson(x);
ch[fa][k]=ch[x][k^];f[ch[fa][k]]=fa;//对应蓝色线,调整x另一方向的孩子和x父节点的关系
ch[x][k^]=fa;f[fa]=x;//对应红色线 ,调整x和父节点的关系
f[x]=fafa;
if(fafa) ch[fafa][ch[fafa][]==fa]=x;//对应紫色线 ,调整x和父节点的父节点的关系
update(fa);update(x);
}
小细节:为什么先update(fa),再update(x) ,因为旋转前,fa是x的父节点,经旋转后,fa变为x的孩子节点,update操作是根据左右孩子子树大小更新的
调用:(双旋) 个人对于双旋的一点理解:http://www.cnblogs.com/TheRoadToTheGold/p/6372344.html
void splay(int x)
{
for(int fa;fa=f[x];rotate(x))
if(f[fa]) rotate(getson(x)==getson(fa) ? fa :x);
root=x;
}
小细节:fa=f[x],1、每执行一次旋转,更新一次da 2、fa==true时才进行
part 2:
A、插入数x insert(int x)
分为3种情况
1、树为空,直接插入x,并让x成为根节点
2、树不为空 ①树中已有x,x出现次数+1,以x为根的子树大小+1,旋转x至根节点
②树中没有x,在适当位置插入x,旋转x至根节点
void create(int x)
{
sz++;key[sz]=x;
cnt[sz]=siz[sz]=;
ch[sz][]=ch[sz][]=f[sz]=;
}
void insert(int x)//插入结点x
{
if(!root) create(x),root=sz;//splay为空
else
{
int now=root,fa=;
while()
{
if(key[now]==x)//树中有x
{
cnt[now]++;
siz[now]++;
splay(now);
break;
}
fa=now;
now=ch[fa][x>key[fa]];
if(!now)
{
create(x);
f[sz]=fa;
ch[fa][x>key[fa]]=sz;
splay(sz);
break;
}
}
}
}
小细节:为什么要splay?仅仅是插入不是插进去就行吗?成不成为根节点有什么关系?
这是为了查找比x小/大的第一个数做铺垫,因为有可能x在树中没有出现过,所以先插入x,再找前驱/后继,这就可以直接从根节点找起,不用再找一次x的位置,最后删除x
(下面的E、F)
B、查询排名为x的数(从小到大)
记得平衡树怎么查找第k小吗?——如果左子树大小<k,找左孩子,否则找右孩子。
类比一下可以得出
1、如果x<当前点左子树大小,找左孩子,这里注意一个小细节是要先判断当前点是否有左孩子
2、否则 定义变量temp=当前结点出现次数+结点左子树大小
①、如果x<=temp 那么这个结点就是答案
因为既然x>=当前点左子树大小,那么他要么是当前点,要么在当前点的右子树
又因为x<=当前点+左子树大小+当前点出现次数,那么他是当前点
②、如果x>temp 那么x减去temp,找右孩子
int findx(int x)
{
int now=root;
while()
{
if(ch[now][]&&x<=siz[ch[now][]]) now=ch[now][];//千万不要漏了ch[now][0]==true
else
{
int temp=(ch[now][] ? siz[ch[now][]] : )+cnt[now];
if(x<=temp) return key[now];
x-=temp;
now=ch[now][];
}
}
}
C、查询x的排名
想想splay本质是二叉查找树,不难得出
1、如果x<当前节点权值 查找左孩子
2、否则 ,先令ans加上当前节点左子树大小
①、如果x=当前节点权值,旋转当前节点至根节点,返回ans+1
因为此时ans不包括当前节点,所以要+1
②、如果x>当前节点权值,ans加上当前节点出现次数,查找右孩子
int findpos(int x)
{
int now=root,ans=;
while()
{
if(x<key[now]) now=ch[now][];
else
{
ans+=ch[now][] ? siz[ch[now][]] : ;
if(x==key[now])
{
splay(now);
return ans+;
}
ans+=cnt[now];
now=ch[now][];
}
}
}
小细节:为什么要splay?
为了下面的删除操作做铺垫,删除数x需要先找到x的位置,删除操作是在x是根节点的基础上进行的(下面的F)
D、查找比x小的第一个数
这就有2种可能:x在树中,x不在树中
x在树中就是查找x的前驱,那么不在树中呢?
我们可以向在树中插入x,在查找前驱,最后再删除x
如何查找前驱? 转向x的左孩子l,然后在l的子树里一直往右找
调用代码:
insert(x);printf("%d\n",key[pre()]);del(x);break;
查找前驱代码:
int pre()
{
int now=ch[root][];
while(ch[now][]) now=ch[now][];
return now;
}
E、查询比x大的第一个数
同理D
直接给代码
insert(x);printf("%d\n",key[nex()]);del(x);break;
int nex()
{
int now=ch[root][];
while(ch[now][]) now=ch[now][];
return now;
}
F、删除数x
分为5种情况
首先,你要先找到x在哪儿,将其旋转至根节点,这里可以直接调用findpos函数
然后,分类讨论(此时根节点就是数x,所以此后操作变为删除根节点)
删除:结点所有信息清0即可
void clear(int x)
{
ch[x][]=ch[x][]=cnt[x]=siz[x]=f[x]=key[x]=;
}
1、根节点在splay树中出现次数>1 根节点的出现次数-1,子树大小-1
if(cnt[root]>)
{
cnt[root]--;siz[root]--;
return;
}
2、否则 ① 根节点既没有左孩子又没有右孩子,说明树中只有这一个结点,直接删去,并 root=0
if(!ch[root][]&&!ch[root][])
{
clear(root);
root=;//千万不要漏了这一句
return;
}
② 根节点没有左孩子,说明树左边为空,那么只需把根节点的右孩子提为根节点,删除原根节点 小细节:新根节点的父节点置为0
if(!ch[root][])
{
int tmp=root;
root=ch[root][];
f[root]=;//不要漏了它
clear(tmp);
return;
}
③ 根节点没有右孩子,与②同理
if(!ch[root][])
{
int tmp=root;
root=ch[root][];
f[root]=;
clear(tmp);
return;
}
④ 根节点既有左孩子又有右孩子
我们可以先把x的前驱l旋转为根节点
手动模拟一下过程可以发现:
在l成为根节点的前一步,一定是x的左孩子 ,这说明了l成为根节点后,x不会有左孩子
那么我们就可以直接把x的右孩子提到x的位置,删除x即可
int pre1=pre(),tmp=root;//tmp现在相当于x的位置
splay(pre1);//x前驱旋转为根节点 ,经过此操作后,根节点变为x的前驱
ch[root][]=ch[tmp][];//x的右孩子提到x的位置
f[ch[tmp][]]=root;//更新父节点
clear(tmp);//删除x
update(root);
为什么要在x是根节点的基础上执行删除操作?
因为splay要维护cnt、siz等信息
如果x不是根节点,x删除,x以上所有结点关于个数之类的信息都要更改
而如果x是根节点,x删除,不会影响其他结点
splay 插入insert、删除del、查询x的排名findpos、查询排名为x的数findx、查找前驱pre(第一个比x小的数)、查找后继nex(第一个比x大的数)完整代码
题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: .插入x数 .删除x数(若有多个相同的数,因只删除一个) .查询x数的排名(若有多个相同的数,因输出最小的排名) .查询排名为x的数 .求x的前驱(前驱定义为小于x,且最大的数) .求x的后继(后继定义为大于x,且最小的数) 输入输出格式 输入格式:
第一行为n,表示操作的个数,下面n行每行有两个数opt和x,opt表示操作的序号(<=opt<=) 输出格式:
对于操作3,,,6每行输出一个数,表示对应答案
代码背景简述
题目来源:https://www.luogu.org/problem/show?pid=3369
#include<cstdio>
#define N 1000000
using namespace std;
int f[N],ch[N][],key[N],cnt[N],siz[N],sz,root;
void update(int x)
{
siz[x]=cnt[x];
if(ch[x][]) siz[x]+=siz[ch[x][]];
if(ch[x][]) siz[x]+=siz[ch[x][]];
} int pre()
{
int now=ch[root][];
while(ch[now][]) now=ch[now][];
return now;
}
int nex()
{
int now=ch[root][];
while(ch[now][]) now=ch[now][];
return now;
}
int getson(int x)
{
return ch[f[x]][]==x;
}
void rotate(int x)
{
int fa=f[x],fafa=f[fa],k=getson(x);
ch[fa][k]=ch[x][k^];f[ch[fa][k]]=fa;
ch[x][k^]=fa;f[fa]=x;
f[x]=fafa;
if(fafa) ch[fafa][ch[fafa][]==fa]=x;
update(fa);update(x);
}
void splay(int x)
{
for(int fa;fa=f[x];rotate(x))
if(f[fa]) rotate(getson(x)==getson(fa) ? fa :x);
root=x;
}
int findpos(int x)
{
int now=root,ans=;
while()
{
if(x<key[now]) now=ch[now][];
else
{
ans+=ch[now][] ? siz[ch[now][]] : ;
if(x==key[now])
{
splay(now);
return ans+;
}
ans+=cnt[now];
now=ch[now][];
}
}
}
int findx(int x)
{
int now=root;
while()
{
if(ch[now][]&&x<=siz[ch[now][]]) now=ch[now][];//千万不要漏了ch[now][0]==true
else
{
int temp=(ch[now][] ? siz[ch[now][]] : )+cnt[now];
if(x<=temp) return key[now];
x-=temp;
now=ch[now][];
}
}
}
void clear(int x)
{
ch[x][]=ch[x][]=cnt[x]=siz[x]=f[x]=key[x]=;
}
void create(int x)
{
sz++;key[sz]=x;
cnt[sz]=siz[sz]=;
ch[sz][]=ch[sz][]=f[sz]=;
}
void insert(int x)
{
if(!root) create(x),root=sz;
else
{
int now=root,fa=;
while()
{
if(key[now]==x)
{
cnt[now]++;
siz[now]++;
splay(now);
break;
}
fa=now;
now=ch[fa][x>key[fa]];
if(!now)
{
create(x);
f[sz]=fa;
ch[fa][x>key[fa]]=sz;
splay(sz);
break;
}
}
}
} void del(int x)
{
int t=findpos(x);
if(cnt[root]>)
{
cnt[root]--;siz[root]--;
return;
}
if(!ch[root][]&&!ch[root][])
{
clear(root);
root=;
return;
}
if(!ch[root][])
{
int tmp=root;
root=ch[root][];
f[root]=;
clear(tmp);
return;
}
if(!ch[root][])
{
int tmp=root;
root=ch[root][];
f[root]=;
clear(tmp);
return;
}
int pre1=pre(),tmp=root;
splay(pre1);
ch[root][]=ch[tmp][];
f[ch[tmp][]]=root;
clear(tmp);
update(root);
}
int main()
{
int n,opt,x;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d%d",&opt,&x);
switch(opt)
{
case :insert(x);break; //插入x
case :del(x);break;//删除x
case :printf("%d\n",findpos(x));break;//查询x的排名
case :printf("%d\n",findx(x));break;//查询排名为x的数
case :insert(x);printf("%d\n",key[pre()]);del(x);break;//查找第一个小于x的数
case :insert(x);printf("%d\n",key[nex()]);del(x);break;//查找第一个大于x的数
}
}
}