low-latency iterative jobs and interactive use from an interpreter. It is
written in Scala, a high-level language for the JVM, and exposes a clean
language-integrated syntax that makes it easy to write parallel jobs.
Spark runs on top of the Mesos cluster manager.
- Spark下载地址?
git clone git://github.com/mesos/spark.git
- Spark编译与运行?
1)scala 2.9 +(将bin添加到PATH中或者设定了SCALA_HOME环境变量)
2) spark支持local模式和cluster模式, local不需要安装mesos
3) 如果需要将spark运行在cluster上,需要安装mesos
4)使用spark自带的sbt编译/打包: sbt/sbt compile, sbt/sbt assembly
5)使用spark自带的run脚本运行spark程序
- 验证spark环境是否OK?
在spark目录下运行:
1) local单线程: ./run spark.examples.SparkPi local
2) local多核: ./run spark.examples.SparkPi local[2]
3) mesos本地master: ./run spark.examples.SparkPi master@localhost:5050
- Spark Programming Guide介绍了哪些东西?
1) 将Spark jar包(sbt/sbt assembly)放入CLASSPATH
2) Spark Application可以运行在local或者mesos上
3) Spark提供了两种RDD: Parallelized Collections 和 Hadoop Datasets, RDD能
够支持fault-tolerant,能够恢复因为节点crash造成的partition丢失问题
4) RDD上支持两种类型的Operation: transformation 和 action,其中transformation提供的
lazy类型的操作,只有当实际调用了action才会真正触发transformations
5) Spark提供了两种类型的shared variables: Broadcast Variables 和 Accumulators,对于
Broadcast variables则会将一份share variable分发到每台机器上,而不是默认情况下的每个task;
而对于accumulator则只能支持count和sum型的加操作,并且只有dirver program能够获取其value
- 如何写一些spark application?
多看一些spark例子,如:http://www.spark-project.org/examples.html
https://github.com/mesos/spark/tree/master/examples
- 遇到问题怎么办?
首先是google遇到的问题,如果还是解决不了就可以到spark google group去向作者提问题:
http://groups.google.com/group/spark-users?hl=en
- 想深入理解spark怎么办?
阅读spark的理论paper: http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-82.pdf
阅读spark源代码:https://github.com/mesos/spark