接上一篇《Ubuntu Kylin系统下安装Hadoop2.6.0》
通过上一篇,Hadoop伪分布式基本配好了。
下一步是运行一个MapReduce程序,以WordCount为例:
1. 构建实现类:
cd /usr/local/hadoop
mkdir workspace
cd workspace
gedit WordCount.java
将代码复制粘贴。
import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable();
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = ;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[]));
FileOutputFormat.setOutputPath(job, new Path(args[]));
System.exit(job.waitForCompletion(true) ? : );
}
}
对于代码的具体分析,下一篇再详细讲解。
2. 编译
(1) 添加JAVA_HOME
export JAVA_HOME=/usr/lib/jvm/java-8u5-sun
忘记JAVA_HOME的可以使用:
echo $JAVA_HOME
(2) 将jdk目录下的bin文件夹添加到环境变量
export PATH=$JAVA_HOME/bin:$PATH
(3) 将hadoop_classpath添加到环境变量
export HADOOP_CLASSPATH=$JAVA_HOME/lib/tools.jar
编译WordCount.java文件
../bin/hadoop com.sun.tools.javac.Main WordCount.java
其中com.sun.tools.javac.Main是生成一个编译器的实例
上述语句生成三个class: WordCount.class Reducer.class TokenizerMapper.class
将上述三个class打包成.jar包
jar cf WordCount.jar WordCount*.class
生成WordCount.jar
3. 运行
bin/hdfs dfs -mkdir /user
bin/hdfs dfs -mkdir /user/hadoop
构造输入文件:
bin/hdfs dfs -put etc/hadoop /input
其中,etc/hadoop是输入文件,可替换为其他文件
bin/hadoop jar /usr/local/hadoop/workspace/WordCount.jar /input /output
查看运行结果
bin/hdfs dfs -cat /output/*
4. 结束Hadoop
sbin/stop-dfs.sh