题意:给定n个点,e条边和每条边的长度t,每两个点之间都有路相连,让你求一条最短的路经过这e条边。
析:刚开始想到要判连通,然后把相应的几块加起来,但是,第二个样例就不过,后来一想,那么有欧拉回路的还得加1啊。
又想每次再判一次是不是欧拉回路,怎么判又是问题,因为并不知道哪些是连在一块的,还得再查找,麻烦啊。。。。
后来上网看了一下题解,原来是要构造啊,也就是说把每个连通块都构造成一个欧拉回路,那么再减去端点的,就能完全连通了。
真是好方法,欧拉回路满足每个点的度都是偶数,也就是说如果不是偶数那么我们就人为的给加上一条,最后计算我们加了多少条,
然后再加上原来题目的e条,就是最后的条数。
代码如下:
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring> using namespace std;
const int maxn = 1000 + 10;
int t, n, e;
vector<int> G[maxn];
bool vis[maxn]; int dfs(int u){
if(vis[u]) return 0;
vis[u] = true;
int ans = (G[u].size() & 1);
for(int i = 0; i < G[u].size(); ++i)
ans += dfs(G[u][i]);
return ans;
} int solve(){
int ans = 0;
for(int i = 1; i <= n; ++i)
if(!G[i].empty() && !vis[i])
ans += max(dfs(i), 2);
return max((ans-2) / 2, 0) + e;
} int main(){
// freopen("in.txt", "r", stdin);
int kase = 0;
while(scanf("%d %d %d", &n, &e, &t) == 3){
if(!n && !e && !t) break;
int u, v;
for(int i = 1; i <= n; ++i) G[i].clear();
memset(vis, 0, sizeof(vis));
for(int i = 0; i < e; ++i){
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
} printf("Case %d: %d\n", ++kase, t * solve());
}
return 0;
}