以前一直不知道该咋搞这个比较好。
感觉推起来那个数字好麻烦。后来有一种比较好的写法就是直接的DFS写法。相应的ismax表示当前位是否有限制。
数位DP也是有一种类似模版的东西,不过需要好好理解。与其他模版不同。
主要还是状态的定义
模版就不整理了。直接上题。
另外这里有一道题是数位DP+自动机的放到自动机里做
HDU 2089 不要62
基本的数位DP可以用来理解DFS写法
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
int dp[MAXN][];
int digit[MAXN],length; int calcu(int len,bool issix,bool ismax)
{
if (len == ) return ;
if (!ismax && dp[len][issix] != -) return dp[len][issix];
int limit = ismax ? digit[len] : ;
int tot = ;
for (int i = ; i <= limit ; i++)
{
if ((issix && i == ) || i == ) continue;
tot += calcu(len - ,i == ,ismax && i == limit);
}
if (ismax) return tot;
else return dp[len][issix] = tot;
} int slove(int x)
{
int len = ;
int num = x;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,false,true);
} int main()
{
memset(dp,-,sizeof(dp));
int l,r;
while (scanf("%d%d",&l,&r) != EOF)
{
if (l == && r == ) break;
if (l > r) swap(l,r);
printf("%d\n",slove(r) - slove(l - ));
}
return ;
}
HDU 3555 Bomb
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
LL dp[MAXN][];
int digit[MAXN]; LL calcu(int length,bool isfour,bool ismax)
{
if (length == ) return ;
if (!ismax && dp[length][isfour] >= ) return dp[length][isfour];
LL tot = ;
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
if (isfour && i == ) continue;
tot += calcu(length - ,i == ,ismax && i == limit);
}
if (!ismax) return dp[length][isfour] = tot;
return tot;
} LL slove(LL x)
{
int len = ;
LL num = x;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,false,true);
} int main()
{
int T,kase = ;
scanf("%d",&T);
memset(dp,-,sizeof(dp));
while (T--)
{
LL N;
scanf("%I64d",&N);
printf("%I64d\n",N - slove(N) + );
}
return ;
}
POJ 3252 Round Numbers
统计二进制形式中0的个数比1的个数不小的数字的数目
很简单的只是进制变成了2进制,这里还要和下一个题目做一下比较。状态的定义不能想简单了
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
LL dp[MAXN][MAXN][MAXN];
int digit[MAXN]; LL calcu(int length,int preone,int prezero,bool zero,bool ismax)
{
if (length == ) return prezero >= preone;
if (!ismax && dp[length][preone][prezero] >= ) return dp[length][preone][prezero];
LL tot = ;
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
int addone = ,addzero = ;
if (i == ) addone = ;
if (i == ) addzero = ;
tot += calcu(length - ,preone +addone,(zero && i == ) ? : prezero + addzero, zero && i == ,ismax && i == limit);
}
if (!ismax) return dp[length][preone][prezero] = tot;
return tot;
} LL slove(LL x)
{
int len = ;
LL num = x;
while (num)
{
digit[++len] = num % ;
num >>= ;
}
return calcu(len,,,true,true);
} int main()
{
LL l,r;
memset(dp,-,sizeof(dp));
while (scanf("%I64d%I64d",&l,&r) != EOF)
{
// printf("%I64d\n",slove(r));
//printf("%I64d\n",slove(l - 1));
//printf("%I64d\n",slove(l));
printf("%I64d\n",slove(r) - slove(l - ));
}
return ;
}
Spoj BAlnum BALNUM - Balanced Numbers
这个题题意是统计十进制形式中奇数出现偶数次,偶数出现奇数次的数字 个数
为什么这道题状态不能向前边那个题,直接dp[i][j][k]第i位出现j个奇数k个偶数然后直接推,
看起来很简单,然而这个状态是错的。为什么?考虑dp[5][3][2],他究竟表示什么。
可以在记忆花过程中直接返回这个值么?13522后边若干位和14688后边若干位都是这个dp状态!!
所以上述状态是错的。正确的是三进制状压。表示每个数字出现的次数的状态0,1,2
具体看代码
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
const int MAXD = ;
LL dp[MAXN][MAXD];
int digit[MAXN];
//order : 9 8 7 6 5 4 3 2 1 0;
//num: 0 1 2 3 4 5 6 7 8 9
//sta : 0 no 1 odd 2 even bool judge(int sta)
{
int num[];
for (int i = ; i < ; i++)
{
num[i] = sta % ;
sta /= ;
}
for (int i = ; i < ; i++)
{
if (num[i] != )
{
if (i % == && num[i] == ) return false;
if (i % == && num[i] == ) return false;
}
}
return true;
} int getsta(int x,int sta)
{
int num[];
for (int i = ; i < ; i++)
{
num[i] = sta % ;
sta /= ;
}
if (num[x] == ) num[x] = ;
else num[x] = - num[x];
int ret = ;
for (int i = ; i >= ; i--)
ret = ret * + num[i];
return ret;
} LL calcu(int length,int presta,bool zero,bool ismax)
{
if (length == ) return judge(presta);
if (!ismax && dp[length][presta] >= ) return dp[length][presta];
int limit = ismax ? digit[length] : ;
LL ret = ;
for (int i = ; i <= limit ; i++)
{
ret += calcu(length - ,(zero && i == ) ? : getsta(i,presta),zero && i == ,ismax && i == limit);
}
if (!ismax) return dp[length][presta] = ret;
return ret;
} LL slove(LL x)
{
LL num = x;
int len = ;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,,true,true);
} int main()
{
int T;
memset(dp,-,sizeof(dp));
scanf("%d",&T);
while (T--)
{
LL l,r;
scanf("%lld%lld",&l,&r);
//cout << slove(r) << endl;
printf("%lld\n",slove(r) - slove(l - ));
}
return ;
}
Codeforces 55D Beautiful numbers
判断数字是否能整除他的十进制形式中所有非0数字的个数
注意到能整除所有位数实际上就是能整除这些位数的LCM,最大就是2520
那么状态定义dp[i][j][k] = val表示到达第i位对2520的摸为多少,当前的LCM为多少
另外代码里对LCM进行了哈希
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
LL gcd(LL a, LL b) {return a % b == ? b : gcd(b, a % b);}
LL lcm(LL a,LL b) {return a / gcd(a,b) * b;}
const int MAXN = ;
const int MAXD = ;
const LL MOD = ;
LL dp[][MAXD][MAXN];
int digit[MAXN];
int Hash[MAXD]; void init()
{
int cas = ;
for (int i = ; i <= MOD ; i++)
{
if (MOD % i == )
Hash[i] = ++cas;
}
} LL calcu(int length,int premod,int prelcm,bool ismax)
{
if (length == ) return premod % prelcm == ;
if (!ismax && dp[length][premod][Hash[prelcm]] >= )
return dp[length][premod][Hash[prelcm]];
int limit = ismax ? digit[length] : ;
LL tot = ;
for (int i = ; i <= limit ; i++)
{
int nextmod = (premod * + i) % MOD;
int nextlcm;
if (i == ) nextlcm = prelcm;
else nextlcm = lcm(prelcm,i);
tot += calcu(length - ,nextmod,nextlcm,ismax && i == limit);
}
if (ismax) return tot;
else return dp[length][premod][Hash[prelcm]] = tot;
} LL slove(LL x)
{
LL num = x,len = ;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,,,true);
} int main()
{
init();
memset(dp,-,sizeof(dp));
int T;
scanf("%d",&T);
while (T--)
{
LL l,r;
scanf("%I64d%I64d",&l,&r);
// cout << slove(r) << endl;
printf("%I64d\n",slove(r) - slove(l - ));
}
return ;
}
HDU 3709 Balanced Number
一开始觉得好难。后来发现只需要枚举支点。复杂度并不会高多少。20而已
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
//此题枚举支点即可不用想麻烦了。
const int MAXN = ;
LL dp[MAXN][MAXN][MAXN * ];
int digit[MAXN]; LL calcu(int length,int premid,int preval,bool ismax)
{
if (length == ) return preval == ;
if (preval < ) return ;
if (!ismax && dp[length][premid][preval] >= ) return dp[length][premid][preval];
LL tot = ;
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
int add = (length - premid) * i;
int nextval = preval + add;
tot += calcu(length - ,premid,nextval,ismax && i == limit);
}
if (!ismax) return dp[length][premid][preval] = tot;
return tot;
} LL slove(LL x)
{
int len = ;
LL num = x;
while (num)
{
digit[++len] = num % ;
num /= ;
}
LL ret = ;
for (int i = ; i <= len ; i++)
ret += calcu(len,i,,true);
return ret - len + ;
} int main()
{
memset(dp,-,sizeof(dp));
LL l,r;
int T;
scanf("%d",&T);
while (T--)
{
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",slove(r) - slove(l - ));
}
return ;
}
HDU 3652 B-number
包含13且整除13的数字个数
为什么不能直接dp[i][0/1]表示到达第i位是否出现13?同前面错误状态的比较
代码
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
LL dp[MAXN][][];
int digit[MAXN]; LL calcu(int length,int presta,int premod,bool ismax)
{
if (length == ) return (presta == && premod == );
if (!ismax && dp[length][presta][premod] >= ) return dp[length][presta][premod];
LL tot = ;
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
int nextmod = (premod * + i) % ;
int nextsta = presta;
if (presta == && i == ) nextsta = ;
if (presta == && i != ) nextsta = ;
if (presta == && i == ) nextsta = ;
tot += calcu(length - ,nextsta,nextmod,ismax && i == limit);
}
if (!ismax) return dp[length][presta][premod] = tot;
return tot;
} LL slove(LL x)
{
LL num = x;
int len = ;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,,,true);
} int main()
{
memset(dp,-,sizeof(dp));
LL N;
while (scanf("%I64d",&N) != EOF)
{
printf("%I64d\n",slove(N));
}
return ;
}
HDU 4352 XHXJ's LIS
统计数字表示中LIS==K的数字的个数
这题状压+数位DP
觉得好厉害。为什么状压。考虑nlognLIS是怎么做的。这里的数字只能是0-9
所以状压。举个例子 1 2 4 6 是g数组,LIS = 4,现在来了个5.G数组变成 1 2 4 5 LIS仍然等于4
考虑好NLOGN LIS 怎么来的。注意前导0和0!
然后数位DP
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
LL dp[MAXN][( << ) + ][];
LL L,R,K;
int digit[MAXN]; int getsta(int x,int s)
{
for (int i = x ; i < ; i++)
{
if (s & ( << i))
{
return (s ^ ( << i)) | ( << x);
}
}
return s | ( << x);
} int getnum(int x)
{
int ret = ;
while (x)
{
if (x & ) ret++;
x >>= ;
}
return ret;
} LL calcu(int length,int presta,bool prezero,bool ismax)
{
if (length == ) return getnum(presta) == K;
if (!ismax && dp[length][presta][K] >= ) return dp[length][presta][K];
LL tot = ;
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
tot += calcu(length - ,(i == && prezero) ? : getsta(i,presta),i == && prezero,ismax && i == limit);
}
if (ismax) return tot;
else return dp[length][presta][K] = tot;
} LL slove(LL x)
{
int len = ;
LL num = x;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,,true,true);
} int main()
{
int T,kase = ;
memset(dp,-,sizeof(dp));
scanf("%d",&T);
while (T--)
{
scanf("%I64d%I64d%I64d",&L,&R,&K);
printf("Case #%d: %I64d\n",kase++,slove(R) - slove(L - ));
}
return ;
}
HDU 4734 f(x)
数位DP的一维状态表示差值即可
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL int
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
const int MAXD = ;
LL dp[][MAXD];
int digit[MAXN];
LL val,A,B; LL calcu(int length,int preval,bool ismax)
{
if (length == ) return preval >= ;
if (preval < ) return ;
if (!ismax && dp[length][preval] >= ) return dp[length][preval];
LL tot = ;
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
tot += calcu(length - ,preval - ( << (length - )) * i,ismax && i == limit);
}
if (!ismax) return dp[length][preval] = tot;
return tot;
} int f(int x)
{
int ret = ,cas = ;
while (x)
{
ret += (x % ) * ( << cas);
cas++;
x /= ;
}
return ret;
} LL slove()
{
int len = ;
LL num = B;
while (num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,f(A),true);
} int main()
{
memset(dp,-,sizeof(dp));
int T,kase = ;
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&A,&B);
printf("Case #%d: %d\n",kase++,slove());
}
return ;
}
HDU 4507
主要是要求的不是数字个数。而是平方和。
那么可能久有点问题了
怎么做考虑(a + b1) ^ 2 + (a + b2) ^ 2 + .... 等于
a^2 * n + b1^ 2 + b2 ^ 2 + ..bn ^ 2 + 2 * a * (b1 + b2 +... bn)
上式实际上就是比如枚举到第3为a就1000,递归的找到b然后推即可
于是dp有三个值。数字个数。一次方和,二次方和
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
const int MAXN = ;
const int MOD = 1e9 + ;
LL fac[];
typedef pair<int,pair<LL,LL> >PII;
PII dp[MAXN][][][];
int digit[MAXN];
bool vis[MAXN][][][]; PII calcu(int length,int presum,int remain,bool contain,bool ismax)
{
if (length == )
{
if (!contain && presum && remain)
return make_pair(,make_pair(0LL,0LL));
else return make_pair(,make_pair(0LL,0LL));
}
if (!ismax && vis[length][presum][remain][contain])
return dp[length][presum][remain][contain];
PII ret = make_pair(,make_pair(0LL,0LL));
int limit = ismax ? digit[length] : ;
for (int i = ; i <= limit ; i++)
{
PII nxt = calcu(length - ,(presum + i) % ,(remain * + i) %
,contain || (i == ),ismax && i == limit);
LL preval = (LL)i * fac[length - ] % MOD;
ret.first = (ret.first + nxt.first) % MOD;
ret.second.first = (ret.second.first + nxt.second.first + preval * nxt.first) % MOD;
ret.second.second = (ret.second.second + nxt.second.second + * preval * nxt.second.first % MOD
+ preval * preval % MOD * nxt.first) % MOD;
}
if(!ismax)
{
vis[length][presum][remain][contain] = true;
dp[length][presum][remain][contain] = ret;
return ret;
}
return ret;
} LL slove(LL x)
{
int len = ;
LL num = x;
while(num)
{
digit[++len] = num % ;
num /= ;
}
return calcu(len,,,,true).second.second;
} int main()
{
fac[] = ;
for (int i = ; i < ; i++) fac[i] = fac[i - ] * % MOD;
int T;
memset(vis,false,sizeof(vis));
scanf("%d",&T);
while (T--)
{
LL l,r;
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",(slove(r) - slove(l - ) + MOD) % MOD);
}
return ;
}
BCD CODE 放到自动机专题里在做