D_num
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Oregon Maple was waiting for Bob When Bob go back home. Oregon Maple asks Bob a problem that as a Positive number N, if there are only four Positive number M makes Gcd(N, M) == M then we called N is a D_num. now, Oregon Maple has some Positive numbers, and if a Positive number N is a D_num , he want to know the four numbers M. But Bob have something to do, so can you help Oregon Maple?
Gcd is Greatest common divisor.
Gcd is Greatest common divisor.
Input
Some cases (case < 100);
Each line have a numeral N(1<=N<10^18)
Each line have a numeral N(1<=N<10^18)
Output
For each N, if N is a D_NUM, then output the four M (if M > 1) which makes Gcd(N, M) = M. output must be Small to large, else output “is not a D_num”.
Sample Input
6
10
9
10
9
Sample Output
2 3 6
2 5 10
is not a D_num
2 5 10
is not a D_num
Source
题意:一个数的因数是否为4个;是,输出>1的因数;
思路:Pollard_rho算法和Miller_Rabin算法,前一个大质数分解,后面判断大数是否为质数;
acdream的模板;
#include<iostream>
#include<cstdio>
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<bitset>
using namespace std;
#define LL unsigned long long
#define pi (4*atan(1.0))
#define eps 1e-4
#define bug(x) cout<<"bug"<<x<<endl;
const int N=,M=1e5+,inf=1e9+;
const LL INF=1e18+,mod=; const int Times = ;
LL ct, cnt;
LL fac[N], num[N]; LL gcd(LL a, LL b)
{
return b? gcd(b, a % b) : a;
} LL multi(LL a, LL b, LL m)
{
LL ans = ;
a %= m;
while(b)
{
if(b & )
{
ans = (ans + a) % m;
b--;
}
b >>= ;
a = (a + a) % m;
}
return ans;
} LL quick_mod(LL a, LL b, LL m)
{
LL ans = ;
a %= m;
while(b)
{
if(b & )
{
ans = multi(ans, a, m);
b--;
}
b >>= ;
a = multi(a, a, m);
}
return ans;
} bool Miller_Rabin(LL n)
{
if(n == ) return true;
if(n < || !(n & )) return false;
LL m = n - ;
int k = ;
while((m & ) == )
{
k++;
m >>= ;
}
for(int i=; i<Times; i++)
{
LL a = rand() % (n - ) + ;
LL x = quick_mod(a, m, n);
LL y = ;
for(int j=; j<k; j++)
{
y = multi(x, x, n);
if(y == && x != && x != n - ) return false;
x = y;
}
if(y != ) return false;
}
return true;
} LL pollard_rho(LL n, LL c)
{
LL i = , k = ;
LL x = rand() % (n - ) + ;
LL y = x;
while(true)
{
i++;
x = (multi(x, x, n) + c) % n;
LL d = gcd((y - x + n) % n, n);
if( < d && d < n) return d;
if(y == x) return n;
if(i == k)
{
y = x;
k <<= ;
}
}
} void Find(LL n, int c)
{
if(n == ) return;
if(Miller_Rabin(n))
{
fac[ct++] = n;
return ;
}
LL p = n;
LL k = c;
while(p >= n) p = pollard_rho(p, c--);
Find(p, k);
Find(n / p, k);
}
int main()
{
LL n;
while(~scanf("%I64d",&n))
{
ct = ;
Find(n, );
sort(fac, fac + ct);
num[] = ;
int k = ;
for(int i=; i<ct; i++)
{
if(fac[i] == fac[i-])
++num[k-];
else
{
num[k] = ;
fac[k++] = fac[i];
}
}
cnt = k;
LL ans = ;
if(cnt==)
{
if(num[]==)printf("%lld %lld %lld\n",fac[],fac[]*fac[],n);
else printf("is not a D_num\n");
}
else if(cnt==)
{
if(num[]==&&num[]==)printf("%lld %lld %lld\n",fac[],fac[],n);
else printf("is not a D_num\n");
}
else printf("is not a D_num\n");
//for(int i=0;i<cnt;i++)
//cout<<num[i]<<" "<<fac[i]<<endl;
}
return ;
}