[Bzoj3675][Apio2014]序列分割(斜率优化)

时间:2020-12-19 14:12:30

3675: [Apio2014]序列分割


Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 4021  Solved: 1569
[Submit][Status][Discuss]

Description


小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
 

Input


输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output


输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input


       

Sample Output


 

HINT


【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+

3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=

20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

分析:


[Bzoj3675][Apio2014]序列分割(斜率优化)

斜率优化眼题,不想说啥,考试时10分钟切掉。

写的是apio原题,bzoj不需要输出方案,结果wa了一发

AC代码:


# include <iostream>
# include <cstdio>
using namespace std;
typedef long long LL;
const int N = 1e5 + ;
LL f[][N],s[N],ret;int n,k,cur,que[N],ans[N],pre[][N];
LL y(int i){return f[cur ^ ][i] - s[i] * s[i];}
LL x(int i){return s[i];}
LL Get(int A,int B){return f[cur ^ ][A] + s[A] * (s[B] - s[A]);}
LL Cross(int A,int B,int C){return (y(C) - y(B)) * (x(B) - x(A)) - (y(B) - y(A)) * (x(C) - x(B));}
int main()
{
scanf("%d %d",&n,&k);
for(int i = ;i <= n;i++)scanf("%lld",&s[i]);
for(int i = ;i <= n;i++)s[i] += s[i - ];
for(int j = ;j <= k;j++)
{
cur ^= ;int h = ,t = ;que[++t] = ;
for(int i = ;i <= n;i++)
{
while(h < t && Get(que[h],i) <= Get(que[h + ],i))h++;
f[cur][i] = Get(que[h],i);pre[j][i] = que[h];
while(h < t && Cross(que[t - ],que[t],i) >= )t--;
que[++t] = i;
}
}
printf("%lld\n",f[cur][n]);
int c = k,r = pre[c][n];
printf("%d",r);
while(pre[c - ][r])r = pre[--c][r],printf(" %d",r);
return ;
}