Mongodb笔记(三)user && aggregate && mapReduce

时间:2021-07-17 14:01:26

版本:mongodb3.4。

User:

   mongodb使用验证登录;默认不开启,mongod中使用--auth开启:

   mongod -port=3000 --auth  ;

   基本方法:

     

db.createUser({
user:username,
pwd:passwd,
roles:[ {role: ' readWrite' , db : 'db1'} ] //定义这个用户对应db的权限。
}); db.updateUser(username,{
pwd:'',
roles:[]
}) db.dropUser(username); db.changeUserPassword(username,newpswd);

   具体roles:参见

   在mongod开启验证前先在默认模式下,创建超级用户:

   mongo:

    use admin;

    db.createUser({user : 'myRoot' ,  pwd: '***' ,  roles: [ role:'root' , db:'admin' ] });

  在创建好超级用户后,再开启mongod的验证模式,这样以后就能考靠这个超级用户来创建其他用户了。

  登录mongod:

    mongo -port=3000 -username=myRoot -password= *** -authenticationDataBase=admin

  authenticationDataBase ,指定你登录的DataBase.

  另一种方法:

    mongo -port=3000;

    use admin;

    db.auth('myRoot','***');

  登录后因为你是超级用户所以可以创建其它用户,并指定权限。

  mongodb在用户登录时,使用明文传输数据。建议使用TSL。

  

 

Aggregate:

Instance:

  db.test.aggregate([

    {$match: {city: 'shanghai' }},                             //匹配城市是上海的人。

    {$limit:5},                                   //只取5个document。  

    {$group:{_id:'$sex'   ,  ageAvg: {$avg:'$age'} }}   //将这5个人按照性别分组,ageAvg获得他们的平均属性。

  ])

  aggregate中的可用操作符是比较多,比如$project:

 

db.test.aggregate([
{$group:{id:'$sex', ageArr: { $push : '$age'}}} ,
{$project: {_id:'$name', sumAge: {
$reduce:{
input:'$ageArr',
initialVal: 0,
in: [ '$$value' ,' $$this'] //value指initialVal的值,this指遍历ageArr时的当前值。
}
}}}
])

  其实功能是相同于$group:{_id:'$sex',ageArr:{$sum:'$age'}}的。不过这个例子的灵活性更高。

  project可以理解为基于上一个collection,做一个映射的collection。

再介绍一个$redact:

    可以根据field,甚至内嵌文档中的field,来过滤document.

db.test.aggregate([
{$math:{city:'shanghai'}},
{$redact:{
$cond:{
if: {$gt:['$age', 15 ]}, //比较操作符:大于15返回ture;小于false;
then:$$DESCEND,        //true,那么继续下降,到内嵌文档,进行判断。
else: $$PRUNE, //false,删除当前文档。
}
} }
])

   redact还有一个Variable:$$keep意为保持现状,不删除,不下降。

   age小于15的document将被删除,父document的age属性大于15,但因为配置了$$DESCEND,如果子document中age小于15,整个document都会被删除。

   而如果父document中没有age属性,子document中即便age小于15,也不会被删除。

  

    

 

mapReduce

db.test.mapReduce(
map(), //2
reduce(), //3
{
query: {age:{$gt:10}}, //1 step1标记是执行顺序。首先筛选age大于10的。
out:'ouo_file', //5 step5 最后生成的collection导出在out_file这个colletion中。
finalize:finalize() //4
}
); function map(){
emit(this.name,this.age); //step2 可以随便发送。第一个值将作为主键,用于分组。第二个值,被push入各组的array中。
} function reduce(key,values){ //step3 组已经被分好,这里处理这个array。并返回一个值。这样新的collection就快要诞生了。
return values.reduce((pre,cur)=>{
return pre*cur;
})
}
function finalize(val){ //step4 为处理后的array值再做一次更改,此步可以省略。
return 'result:' +val;
}

 序号是其执行顺序。mapReduce比aggregate灵活些。不过aggregate的方法都是内部封装,性能上要优于mapReduce。而一般情况,aggregate都能满足需求。

out的其他选项:

out:{ merge:'out_put'};   与已存在的out_put进行合并。

out:{ reduce :'out_put'};  将所得的value值与已存在的out_put内每个document 中value值相+ ( string+string ,number+number)。