Skew Join
真实数据中数据倾斜是一定的, hadoop 中默认是使用
hive.exec.reducers.bytes.per.reducer = 1000000000
也就是每个节点的reduce 默认是处理1G大小的数据,如果你的join 操作也产生了数据倾斜,那么你可以在hive 中设定
set hive.optimize.skewjoin = true;
set hive.skewjoin.key = skew_key_threshold (default = 100000)
hive 在运行的时候没有办法判断哪个key 会产生多大的倾斜,所以使用这个参数控制倾斜的阈值,如果超过这个值,新的值会发送给那些还没有达到的reduce, 一般可以设置成你
(处理的总记录数/reduce个数)的2-4倍都可以接受.
倾斜是经常会存在的,一般select 的层数超过2层,翻译成执行计划多于3个以上的mapreduce job 都很容易产生倾斜,建议每次运行比较复杂的sql 之前都可以设一下这个参数. 如果你不知道设置多少,可以就按官方默认的1个reduce 只处理1G 的算法,那么 skew_key_threshold = 1G/平均行长. 或者默认直接设成250000000 (差不多算平均行长4个字节)
Left Semi Join
hive 中没有in/exist 这样的子句,所以需要将这种类型的子句转成left semi join. left semi join 是只传递表的join key给map 阶段 , 如果key 足够小还是执行map join, 如果不是则还是common join.
相关文章
- 关于Linq to Sql 中的left join 中defaultifempty的相关注意事项
- sql语句中left join、inner join中的on与where的区别
- left join中where与on的区别
- ORACLE- join,inner join 与 left join, left outer join
- LEFT JOIN与多个SELECT语句
- 解析sql语句中left_join、inner_join中的on与where的区别
- Linq To Sql中实现Left Join与Inner Join使用Linq语法与lambda表达式
- 转!!left join on and 与 left join on where的区别
- SQL中 Left Join 与 Right Join 与 Inner Join 与 Full Join的区别
- MySQL表LEFT JOIN左连接与RIGHT JOIN右连接的实例教程