I need to extract a subset from a xts object, a
, that contains all the dates from another xts object, b
, plus a set of neighboring dates for each of the dates in b
. The neighboring dates could be the n
dates before each date in b
and the k
dates after.
我需要从xts对象中提取一个子集a,它包含来自另一个xts对象的所有日期,b,以及b中每个日期的一组相邻日期。相邻日期可以是b中每个日期之前的n个日期和之后的k个日期。
For example:
a <- structure(c(9L, 10L, 11L, 15L, 18L, 12L, 13L, 18L, 19L, 19L, 22L, 25L),
.Dim = c(12L, 1L), index = structure(c(951696000, 951868800, 951955200,
952041600, 952128000, 952214400, 952300800, 952387200, 952473600, 952560000,
952646400, 952732800), tzone = "UTC", tclass = "Date"), class = c("xts", "zoo"),
.indexCLASS = "Date", tclass = "Date", .indexTZ = "UTC", tzone = "UTC")
b <- structure(1:2, .Dim = c(2L, 1L), index = structure(c(952041600, 952560000),
tzone = "UTC", tclass = "Date"), class = c("xts", "zoo"), .indexCLASS = "Date",
tclass = "Date", .indexTZ = "UTC", tzone = "UTC")
n <- 2
k <- 1
then the output xts object, o
, should be:
那么输出xts对象o应该是:
o <- structure(c(10L, 11L, 15L, 18L, 18L, 19L, 19L, 22L), .Dim = c(8L, 1L),
index = structure(c(951868800, 951955200, 952041600, 952128000, 952387200,
952473600, 952560000, 952646400), tzone = "UTC", tclass = "Date"),
class = c("xts", "zoo"), .indexCLASS = "Date", tclass = "Date",
.indexTZ = "UTC", tzone = "UTC")
I'm getting each date in b
, and then the 2 preceding dates and the 1 following date. I know that for instance by taking:
我在b中得到每个日期,然后是前两个日期和下一个日期。我知道,例如通过采取:
a[index(b)]
I get the dates in b
. But I couldn't find a way (possibly efficient!) to select the dates next to them.
我在b中得到了约会。但我找不到一种方法(可能有效率!)来选择它们旁边的日期。
1 个解决方案
#1
1
If you literally meant "neighboring dates", you could add n
and subtract k
from each element of index(b)
:
如果你的字面意思是“相邻日期”,你可以添加n并从索引(b)的每个元素中减去k:
i <- c(0,-seq(n),seq(k))
# repeat index(b) for each value we want: 1) actual value, 2) -n, 3) +k
idx <- rep(index(b), each=length(i)) + i
o <- a[idx,]
If you actually meant "neighboring observations", you could take the output from a[index(b), which.i=TRUE]
, and then add n
and subtract k
from each element of that vector:
如果您实际上是指“邻近观察”,则可以从[index(b),which.i = TRUE]中获取输出,然后添加n并从该向量的每个元素中减去k:
i <- c(0,-seq(n),seq(k))
b.in.a <- a[index(b), which.i=TRUE]
# repeat b.in.a for each value we want: 1) actual value, 2) -n, 3) +k
idx <- rep(b.in.a, each=length(i)) + i
o <- a[idx,]
The two approaches yield the same results in your case, but they would be different if a
didn't contain contiguous dates.
这两种方法在您的情况下会产生相同的结果,但如果不包含连续日期,它们会有所不同。
#1
1
If you literally meant "neighboring dates", you could add n
and subtract k
from each element of index(b)
:
如果你的字面意思是“相邻日期”,你可以添加n并从索引(b)的每个元素中减去k:
i <- c(0,-seq(n),seq(k))
# repeat index(b) for each value we want: 1) actual value, 2) -n, 3) +k
idx <- rep(index(b), each=length(i)) + i
o <- a[idx,]
If you actually meant "neighboring observations", you could take the output from a[index(b), which.i=TRUE]
, and then add n
and subtract k
from each element of that vector:
如果您实际上是指“邻近观察”,则可以从[index(b),which.i = TRUE]中获取输出,然后添加n并从该向量的每个元素中减去k:
i <- c(0,-seq(n),seq(k))
b.in.a <- a[index(b), which.i=TRUE]
# repeat b.in.a for each value we want: 1) actual value, 2) -n, 3) +k
idx <- rep(b.in.a, each=length(i)) + i
o <- a[idx,]
The two approaches yield the same results in your case, but they would be different if a
didn't contain contiguous dates.
这两种方法在您的情况下会产生相同的结果,但如果不包含连续日期,它们会有所不同。