显然若右端点确定,gcd最多变化log次。容易想到对每一种gcd二分找最远端点,但这样就变成log^3了。注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂。由于区间只有log个,暴力即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100010
#define ll long long
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,r[N],tmp[N],head=,tail;
ll a[N],ans,g[N];
ll gcd(ll n,ll m){return m==?n:gcd(m,n%m);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4488.in","r",stdin);
freopen("bzoj4488.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
{
r[++tail]=i;g[tail]=a[i];
for (int j=head;j<tail;j++) g[j]=gcd(g[j],a[i]);
int x=tail+;
for (int j=tail;j>=head;j--)
{
int t=j;
while (t>head&&g[t-]==g[j]) t--;
x--,r[x]=r[t],g[x]=g[t];
j=t;
}
head=x;
for (int j=head;j<=tail;j++) ans=max(ans,(i-r[j]+)*g[j]);
}
cout<<ans;
return ;
}