I have a data frame with unix times and prices in it. I want to convert the index column so that it shows in human readable dates. So for instance i have "date" as 1349633705 in the index column but I'd want it to show as 10/07/2012 (or at least 10/07/2012 18:15). For some context, here is the code I'm working with and what I've tried already:
我有一个包含unix时间和价格的数据框架。我想要转换索引列,以便在人类可读日期中显示。例如,我在索引列中有“date”,如1349633705,但我希望它显示为10/07/2012(或至少10/07/2012 18:15)。在某些情况下,这里是我正在处理的代码和我已经尝试过的:
import json
import urllib2
from datetime import datetime
response = urllib2.urlopen('http://blockchain.info/charts/market-price?&format=json')
data = json.load(response)
df = DataFrame(data['values'])
df.columns = ["date","price"]
#convert dates
df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
df.index = df.date
df
As you can see I'm using df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
here which doesn't work since I'm working with integers, not strings. I think I need to use datetime.date.fromtimestamp
but I'm not quite sure how to apply this to the whole of df.date. Thanks.
可以看到,我用的是df。= df.date日期。应用(λd:datetime。这里的strptime(d,“%Y-%m-%d”)不起作用,因为我使用的是整数,而不是字符串。我想我需要使用datetime.date.fromtimestamp,但是我不太确定如何将它应用到整个df.date中。谢谢。
3 个解决方案
#1
111
These appear to be seconds since epoch.
这似乎是几秒后的时代。
In [20]: df = DataFrame(data['values'])
In [21]: df.columns = ["date","price"]
In [22]: df
Out[22]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 358 entries, 0 to 357
Data columns (total 2 columns):
date 358 non-null values
price 358 non-null values
dtypes: float64(1), int64(1)
In [23]: df.head()
Out[23]:
date price
0 1349720105 12.08
1 1349806505 12.35
2 1349892905 12.15
3 1349979305 12.19
4 1350065705 12.15
In [25]: df['date'] = pd.to_datetime(df['date'],unit='s')
In [26]: df.head()
Out[26]:
date price
0 2012-10-08 18:15:05 12.08
1 2012-10-09 18:15:05 12.35
2 2012-10-10 18:15:05 12.15
3 2012-10-11 18:15:05 12.19
4 2012-10-12 18:15:05 12.15
In [27]: df.dtypes
Out[27]:
date datetime64[ns]
price float64
dtype: object
#2
11
If you try using:
如果你试着用:
df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],***unit='s'***))
and receive an error :
并收到一个错误:
"pandas.tslib.OutOfBoundsDatetime: cannot convert input with unit 's'"
“pandas.tslib。OutOfBoundsDatetime:不能将输入转换为单位“s”
This means the DATE_FIELD
is not specified in seconds.
这意味着DATE_FIELD不是以秒为单位指定的。
In my case, it was milli seconds - EPOCH time
.
在我的例子中,那是毫秒——历元时间。
The conversion worked using below:
转换工作使用如下:
df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],unit='ms'))
#3
1
Assuming we imported pandas as pd and df is our dataframe
假设我们进口的熊猫是pd, df是我们的dataframe
pd.to_datetime(df['date'],unit='s')
this code worked for me
这段代码对我有用
#1
111
These appear to be seconds since epoch.
这似乎是几秒后的时代。
In [20]: df = DataFrame(data['values'])
In [21]: df.columns = ["date","price"]
In [22]: df
Out[22]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 358 entries, 0 to 357
Data columns (total 2 columns):
date 358 non-null values
price 358 non-null values
dtypes: float64(1), int64(1)
In [23]: df.head()
Out[23]:
date price
0 1349720105 12.08
1 1349806505 12.35
2 1349892905 12.15
3 1349979305 12.19
4 1350065705 12.15
In [25]: df['date'] = pd.to_datetime(df['date'],unit='s')
In [26]: df.head()
Out[26]:
date price
0 2012-10-08 18:15:05 12.08
1 2012-10-09 18:15:05 12.35
2 2012-10-10 18:15:05 12.15
3 2012-10-11 18:15:05 12.19
4 2012-10-12 18:15:05 12.15
In [27]: df.dtypes
Out[27]:
date datetime64[ns]
price float64
dtype: object
#2
11
If you try using:
如果你试着用:
df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],***unit='s'***))
and receive an error :
并收到一个错误:
"pandas.tslib.OutOfBoundsDatetime: cannot convert input with unit 's'"
“pandas.tslib。OutOfBoundsDatetime:不能将输入转换为单位“s”
This means the DATE_FIELD
is not specified in seconds.
这意味着DATE_FIELD不是以秒为单位指定的。
In my case, it was milli seconds - EPOCH time
.
在我的例子中,那是毫秒——历元时间。
The conversion worked using below:
转换工作使用如下:
df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],unit='ms'))
#3
1
Assuming we imported pandas as pd and df is our dataframe
假设我们进口的熊猫是pd, df是我们的dataframe
pd.to_datetime(df['date'],unit='s')
this code worked for me
这段代码对我有用