I have the following dataframe:
我有以下数据帧:
df = pd.DataFrame([
(1, 1, 'term1'),
(1, 2, 'term2'),
(1, 1, 'term1'),
(1, 1, 'term2'),
(2, 2, 'term3'),
(2, 3, 'term1'),
(2, 2, 'term1')
], columns=['id', 'group', 'term'])
I want to group it by id
and group
and calculate the number of each term for this id, group pair.
我想按ID和组对其进行分组,并计算此ID,组对的每个术语的数量。
So in the end I am going to get something like this:
所以最后我会得到这样的东西:
I was able to achieve what I want by looping over all the rows with df.iterrows()
and creating a new dataframe, but this is clearly inefficient. (If it helps, I know the list of all terms beforehand and there are ~10 of them).
通过使用df.iterrows()循环遍历所有行并创建新数据帧,我能够实现我想要的效果,但这显然效率低下。 (如果有帮助,我事先知道所有术语的列表,其中有10个)。
It looks like I have to group by and then count values, so I tried that with df.groupby(['id', 'group']).value_counts()
which does not work because value_counts operates on the groupby series and not a dataframe.
看起来我必须分组然后计算值,所以我尝试使用df.groupby(['id','group'])。value_counts()这不起作用,因为value_counts在groupby系列上运行而不是数据帧。
Anyway I can achieve this without looping?
无论如何,我可以实现这一点而不循环?
4 个解决方案
#1
#2
9
using pivot_table() method:
使用pivot_table()方法:
In [22]: df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
Out[22]:
term term1 term2 term3
id group
1 1 2 1 0
2 0 1 0
2 2 1 0 1
3 1 0 0
Timing against 700K rows DF:
针对700K行DF的时序:
In [24]: df = pd.concat([df] * 10**5, ignore_index=True)
In [25]: df.shape
Out[25]: (700000, 3)
In [3]: %timeit df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
1 loop, best of 3: 226 ms per loop
In [4]: %timeit df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
1 loop, best of 3: 236 ms per loop
In [5]: %timeit pd.crosstab([df.id, df.group], df.term)
1 loop, best of 3: 355 ms per loop
In [6]: %timeit df.groupby(['id','group','term'])['term'].size().unstack().fillna(0).astype(int)
1 loop, best of 3: 232 ms per loop
In [7]: %timeit df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
1 loop, best of 3: 231 ms per loop
Timing against 7M rows DF:
针对7M行DF的时序:
In [9]: df = pd.concat([df] * 10, ignore_index=True)
In [10]: df.shape
Out[10]: (7000000, 3)
In [11]: %timeit df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
1 loop, best of 3: 2.27 s per loop
In [12]: %timeit df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
1 loop, best of 3: 2.3 s per loop
In [13]: %timeit pd.crosstab([df.id, df.group], df.term)
1 loop, best of 3: 3.37 s per loop
In [14]: %timeit df.groupby(['id','group','term'])['term'].size().unstack().fillna(0).astype(int)
1 loop, best of 3: 2.28 s per loop
In [15]: %timeit df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
1 loop, best of 3: 1.89 s per loop
#3
5
You can use crosstab
:
您可以使用交叉表:
print (pd.crosstab([df.id, df.group], df.term))
term term1 term2 term3
id group
1 1 2 1 0
2 0 1 0
2 2 1 0 1
3 1 0 0
Another solution with groupby
with aggregating size
, reshaping by unstack
:
另一个解决方案是groupby具有聚合大小,通过unstack重新整形:
df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
term term1 term2 term3
id group
1 1 2 1 0
2 0 1 0
2 2 1 0 1
3 1 0 0
Timings:
df = pd.concat([df]*10000).reset_index(drop=True)
In [48]: %timeit (df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0))
100 loops, best of 3: 12.4 ms per loop
In [49]: %timeit (df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0))
100 loops, best of 3: 12.2 ms per loop
#4
4
Instead of remembering lengthy solutions, how about the one that pandas has built in for you:
而不是记住冗长的解决方案,大熊猫为你建立的那个怎么样:
df.groupby(['id', 'group', 'term']).count()
#1
32
I use groupby
and size
我使用groupby和size
df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
Timing
1,000,000 rows
df = pd.DataFrame(dict(id=np.random.choice(100, 1000000),
group=np.random.choice(20, 1000000),
term=np.random.choice(10, 1000000)))
#2
9
using pivot_table() method:
使用pivot_table()方法:
In [22]: df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
Out[22]:
term term1 term2 term3
id group
1 1 2 1 0
2 0 1 0
2 2 1 0 1
3 1 0 0
Timing against 700K rows DF:
针对700K行DF的时序:
In [24]: df = pd.concat([df] * 10**5, ignore_index=True)
In [25]: df.shape
Out[25]: (700000, 3)
In [3]: %timeit df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
1 loop, best of 3: 226 ms per loop
In [4]: %timeit df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
1 loop, best of 3: 236 ms per loop
In [5]: %timeit pd.crosstab([df.id, df.group], df.term)
1 loop, best of 3: 355 ms per loop
In [6]: %timeit df.groupby(['id','group','term'])['term'].size().unstack().fillna(0).astype(int)
1 loop, best of 3: 232 ms per loop
In [7]: %timeit df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
1 loop, best of 3: 231 ms per loop
Timing against 7M rows DF:
针对7M行DF的时序:
In [9]: df = pd.concat([df] * 10, ignore_index=True)
In [10]: df.shape
Out[10]: (7000000, 3)
In [11]: %timeit df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
1 loop, best of 3: 2.27 s per loop
In [12]: %timeit df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
1 loop, best of 3: 2.3 s per loop
In [13]: %timeit pd.crosstab([df.id, df.group], df.term)
1 loop, best of 3: 3.37 s per loop
In [14]: %timeit df.groupby(['id','group','term'])['term'].size().unstack().fillna(0).astype(int)
1 loop, best of 3: 2.28 s per loop
In [15]: %timeit df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
1 loop, best of 3: 1.89 s per loop
#3
5
You can use crosstab
:
您可以使用交叉表:
print (pd.crosstab([df.id, df.group], df.term))
term term1 term2 term3
id group
1 1 2 1 0
2 0 1 0
2 2 1 0 1
3 1 0 0
Another solution with groupby
with aggregating size
, reshaping by unstack
:
另一个解决方案是groupby具有聚合大小,通过unstack重新整形:
df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
term term1 term2 term3
id group
1 1 2 1 0
2 0 1 0
2 2 1 0 1
3 1 0 0
Timings:
df = pd.concat([df]*10000).reset_index(drop=True)
In [48]: %timeit (df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0))
100 loops, best of 3: 12.4 ms per loop
In [49]: %timeit (df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0))
100 loops, best of 3: 12.2 ms per loop
#4
4
Instead of remembering lengthy solutions, how about the one that pandas has built in for you:
而不是记住冗长的解决方案,大熊猫为你建立的那个怎么样:
df.groupby(['id', 'group', 'term']).count()