[抄题]:
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:
Input: "cbbd"
Output: "bb"
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
知道但是写不出来:
extendPalindrome(s, i, i)扩展奇数长度,
extendPalindrome(s, i, i + 1); 扩展偶数长度
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
定义lo, maxLen变量,从中间截断
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
改变low index 和maxlength index,字符串不是直接得来的,是从中切出来的
[复杂度]:Time complexity: O(n) Space complexity: O(1)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
class Solution {
//ini
int lo, maxLength; public String longestPalindrome(String s) {
//cc: s.length() <
if (s == "" || s.length() == 0 || s.length() == 1) return s; //for loop in two cases
for (int i = 0; i < s.length() - 1; i++) {
extendPalindrome(s, i, i);
extendPalindrome(s, i, i + 1);
} //return substring
return s.substring(lo, lo + maxLength);
} public void extendPalindrome(String s, int k, int j) {
//while loop
//k should always < s.length() since the index is from 0 to n -1
while (j >= 0 && k < s.length() && s.charAt(j) == s.charAt(k)) {
j--;
k++;
} //renew the lo, maxLength;
if (k - 1 - j > maxLength) {
maxLength = k - 1 - j;
lo = j + 1;
}
}
}
[潜台词] :