Pandas: 如何将一列中的文本拆分为多行? | Python

时间:2021-04-10 10:34:26

Pandas: 如何将一列中的文本拆分为多行?

在数据处理过程中,经常会遇到以下类型的数据:

Pandas: 如何将一列中的文本拆分为多行? |  Python

在同一列中,本该分别填入多行中的数据,被填在一行里了,然而在分析的时候,需要拆分成为多行。

在上图中,列名为”Country” ,index为4和5的单元格内,值为”UK/Australia”和”UK/Netherland”。

今天,我们来介绍将含有多值的内容分拆成多行的几种方法。

加载数据

PS:可以通过左右滑动来查看代码

import pandas as pd

df = pd.DataFrame({'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'],
'Number':[100, 150, 120, 90, 30, 2],
'Value': [1, 2, 3, 4, 5, 6],
'label': list('abcdef')})
df

Out[2]:
Country Number Value label
0 China 100 1 a
1 US 150 2 b
2 Japan 120 3 c
3 EU 90 4 d
4 UK/Australia 30 5 e
5 UK/Netherland 2 6 f

1 Method-1

分为如下几步:

  1. 将含有多值的列进行拆分,然后通过stack()方法进行变换,并通过index的设置来完成
  2. drop()方法从DataFrame中删除含有多值的列
  3. 然后用join()方法来合并
df.drop('Country', axis=1).join(df['Country'].str.split('/', expand=True).stack().reset_index(level=1, drop=True).rename('Country'))
Out[3]:
Number Value label Country
0 100 1 a China
1 150 2 b US
2 120 3 c Japan
3 90 4 d EU
4 30 5 e UK
4 30 5 e Australia
5 2 6 f UK
5 2 6 f Netherland

过程分步介绍

df['Country'].str.split('/', expand=True).stack()
Out[4]:
0 0 China
1 0 US
2 0 Japan
3 0 EU
4 0 UK
1 Australia
5 0 UK
1 Netherland
dtype: object

df['Country'].str.split('/', expand=True).stack().reset_index(level=1, drop=True)
Out[5]:
0 China
1 US
2 Japan
3 EU
4 UK
4 Australia
5 UK
5 Netherland
dtype: object

df['Country'].str.split('/', expand=True).stack().reset_index(level=1, drop=True).rename('Country')
Out[6]:
0 China
1 US
2 Japan
3 EU
4 UK
4 Australia
5 UK
5 Netherland
Name: Country, dtype: object

df.drop('Country', axis=1)
Out[7]:
Number Value label
0 100 1 a
1 150 2 b
2 120 3 c
3 90 4 d
4 30 5 e
5 2 6 f

2 Method-2

该方法的思路跟Method-1基本是一样的,只是在具体的细节方面有些差异。代码如下:


df['Country'].str.split('/', expand=True).stack().reset_index(level=0).set_index('level_0').rename(columns={0:'Country'}).join(df.drop('Country', axis=1))
Out[8]:
Country Number Value label
0 China 100 1 a
1 US 150 2 b
2 Japan 120 3 c
3 EU 90 4 d
4 UK 30 5 e
4 Australia 30 5 e
5 UK 2 6 f
5 Netherland 2 6 f

过程分步介绍如下:

df['Country'].str.split('/', expand=True).stack().reset_index(level=0)
Out[9]:
level_0 0
0 0 China
0 1 US
0 2 Japan
0 3 EU
0 4 UK
1 4 Australia
0 5 UK
1 5 Netherland

df['Country'].str.split('/', expand=True).stack().reset_index(level=0).set_index('level_0')
Out[10]:
0
level_0
0 China
1 US
2 Japan
3 EU
4 UK
4 Australia
5 UK
5 Netherland

df['Country'].str.split('/', expand=True).stack().reset_index(level=0).set_index('level_0').rename(columns={0:'Country'})
Out[11]:
Country
level_0
0 China
1 US
2 Japan
3 EU
4 UK
4 Australia
5 UK
5 Netherland

df.drop('Country', axis=1)
Out[12]:
Number Value label
0 100 1 a
1 150 2 b
2 120 3 c
3 90 4 d
4 30 5 e
5 2 6 f

3 闲谈

当然,将某列中含有多值的单元拆分成多行,还有其他方法,各位小伙伴们可以研究下~~

本期推荐阅读: