#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys, gdal, os
from gdalconst import GA_ReadOnly
from os.path import realpath
from shapely.geometry import LineString #根据坐标点计算该点所在栅格上的值
def get_elevation(x_coord, y_coord, raster, bands, geo_trans):
"""
get the elevation value of each pixel under
location x, y
:param x_coord: x coordinate
:param y_coord: y coordinate
:param raster: gdal raster open object
:param bands: number of bands in image
:param gt: raster limits
:return: elevation value of raster at point x,y
"""
elev_list = []
x_origin = geo_trans[0]
y_origin = geo_trans[3]
pix_width = geo_trans[1]
pix_height = geo_trans[5]
#计算栅格点的位置
x_pt = int((x_coord - x_origin) / pix_width)
y_pt = int((y_coord - y_origin) / pix_height)
for band_num in range(bands):
ras_band = raster.GetRasterBand(band_num + 1)
#计算栅格点的值
ras_data = ras_band.ReadAsArray(x_pt, y_pt, 1, 1)
elev_list.append(ras_data[0][0])
return elev_list def write_to_csv(csv_out, profil_x_z):
# check if output file exists on disk if yes delete it
if os.path.isfile(csv_out):
os.remove(csv_out) # create new CSV file containing X (distance) and Z value pairs
with open(csv_out, 'a') as outfile:
# write first row column names into CSV
outfile.write("distance,elevation" + "\n")
# loop through each pair and write to CSV
for x, z in profil_x_z:
outfile.write(str(round(x, 2)) + ',' + str(round(z, 2)) + '\n') if __name__ == '__main__':
# set directory
in_dem = realpath("../geodata/dem_3857.dem") # open the image
ds = gdal.Open(in_dem, GA_ReadOnly) if ds is None:
print('Could not open image')
sys.exit(1) # get raster bands
bands = ds.RasterCount # get georeference info
transform = ds.GetGeoTransform() # line defining the the profile
line = LineString([(-13659328.8483806, 6450545.73152317), (-13651422.7820022, 6466228.25663444)])
# length in meters of profile line
length_m = line.length # lists of coords and elevations
x = []
y = []
z = []
# distance of the topographic profile
distance = []
#每隔20取一个点
for curent_dist in range(0, int(length_m), 20):
#利用线性分段计算点的坐标
# creation of the point on the line
point = line.interpolate(curent_dist)
xp, yp = point.x, point.y
x.append(xp)
y.append(yp)
#获取该点的高程值
# extraction of the elevation value from the MNT
z.append(get_elevation(xp, yp, ds, bands, transform)[0])
distance.append(curent_dist) print (x)
print (y)
print (z)
print (distance) # combine distance and elevation vales as pairs
profile_x_z = zip(distance, z) csv_file = os.path.realpath('../geodata/output_profile.csv')
# output final csv data
write_to_csv(csv_file, profile_x_z)