Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
2
/ \
1 3
Binary tree [2,1,3]
, return true.
Example 2:
1
/ \
2 3
Binary tree [1,2,3]
, return false.
对每一个节点使用一个upper bound and lower bound. 时间复杂度 O(N).
def isValidBST(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
maxInt = 2147483647
minInt = -2147483648 return self.isBSTHelper(root, minInt, maxInt) def isBSTHelper(self, root, minVal, maxVal):
if not root:
return True if root.val <= maxVal and root.val >= minVal and self.isBSTHelper(root.left, minVal, root.val - 1) and self.isBSTHelper(root.right, root.val + 1, maxVal):
return True
else:
return False
思路二:如果中序遍历一下tree,BST应该给出一个递增序列。注意中序遍历的非递归算法。
class Solution(object):
def isValidBST(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
ans = []
self.inOrder(root, ans) n = len(ans)
if n <= 1:
return True
for i in range(1,n):
if ans[i] <= ans[i-1]:
return False
return True def inOrder(self, root, ans):
if not root:
return ans
else:
self.inOrder(root.left, ans)
ans.append(root.val)
self.inOrder(root.right, ans)