622A - Infinite Sequence 20171123
暴力枚举\(n\)在哪个区间即可,时间复杂度为\(O(\sqrt{n})\)
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
long long n;
int main()
{
scanf("%I64d",&n);
for(long long i=;;i++)
if(i*(i+)/>=n)
return printf("%I64d\n",n-i*(i-)/),;
}
622B - The Time 20171123
没什么好说的......
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int h,m,a;
void print(int k)
{
if(k<)printf("0%d",k);
else printf("%d",k);
}
int main()
{
scanf("%d:%d%d",&h,&m,&a);
m+=a;h+=m/;m%=;h%=;
print(h);printf(":");print(m);
return ;
}
622C - Not Equal on a Segment 20171123
设f[i]为前i个数里不同数的个数,然后瞎几把乱搞就好了_(:з」∠)_
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#define N 1000001
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m,a[N],l,r,x,_,f[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
f[i]=f[i-]+(a[i]!=a[i-]);
}
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&l,&r,&x);
if(f[l]==f[r] && a[l]==x)
{printf("-1\n");continue;}
if(a[l]!=x)printf("%d\n",l);else
printf("%d\n",upper_bound(f+l,f+r,f[l])-f);
}
return ;
}
622D - Optimal Number Permutation 20171123
构造题...朝着让结果为0的目标去就好了
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,a,b,f[];
int main()
{
scanf("%d",&n);a=,b=n+;
for(int i=;i<n;i++)f[a]=f[a+n-i]=i,a++,swap(a,b);f[a]=f[*n]=n;
for(int i=;i<=*n;i++)printf("%d%c",f[i],i==*n?'\n':' ');
return ;
}
622E - Ants in Leaves 20180919
考虑从根节点连出去的几个子树的答案是多少,对于每个子树,把子树中所有的叶子节点按深度排序,若设f[i]为第i个叶子爬到子树的根结点所需要的时间,则f[i]的初始值为他的深度,且有\(f_i=max(f_{i},f_{i-1}+1)\)。最终答案就是所有子树对应答案的最大值
#include<bits/stdc++.h>
using namespace std;
#define N 500001
int n,u,v,ans,cnt,f[N];
vector<int>d[N];
void dfs(int cur,int pre,int dep)
{
int x=;
for(auto nxt:d[cur])if(nxt!=pre)
x=,dfs(nxt,cur,dep+);
if(!x)f[++cnt]=dep;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&u,&v),
d[u].push_back(v),
d[v].push_back(u);
for(auto i:d[])
{
cnt=;
dfs(i,,);
sort(f+,f+cnt+);
for(int i=;i<=cnt;i++)
f[i]=max(f[i],f[i-]+);
ans=max(ans,f[cnt]+);
}
return printf("%d\n",ans),;
}
622F - The Sum of the k-th Powers 20180317
拉格朗日插值法的经典应用
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#define N 1000005
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define LL long long
#define MOD 1000000007
LL n,k,t,ans,inv[N],y[N],f[N];
LL qow(LL X,LL Y){return Y?(Y&?X*qow(X,Y-)%MOD:qow(X*X%MOD,Y/)):;}
int main()
{
scanf("%I64d%I64d",&n,&k);
inv[]=f[]=t=;
for(LL i=;i<=k+;i++)
inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
for(LL i=;i<=k+;i++)
f[i]=f[i-]*inv[i]%MOD;
for(LL i=;i<=k+;i++)
y[i]=(y[i-]+qow(i,k))%MOD;
if(n<=k+)return printf("%I64d\n",y[n]),;
for(LL i=;i<=k+;i++)
t*=(n-i)%MOD,t%=MOD;
for(LL i=;i<=k+;i++)
{
LL s=((i-k)%)?-:,res=y[i];
res*=t*qow((n-i)%MOD,MOD-)%MOD,res%=MOD;
res*=f[i-]*f[k+-i]%MOD,res%=MOD;
ans+=(res*s+MOD)%MOD,ans%=MOD;
}
printf("%I64d\n",ans);
return ;
}