极简反传(BP)神经网络

时间:2022-08-10 07:30:02

一、两层神经网络(感知机)

极简反传(BP)神经网络

import numpy as np

'''极简两层反传(BP)神经网络'''

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,0,1,1]) # 权值矩阵 初始化
Wi = 2 * np.random.random(3) - 1 for iter in range(10000):
# 前向传播,计算误差
li = X
lo = 1 / (1 + np.exp(-np.dot(li, Wi))) # 激活函数:sigmoid
lo_error = y - lo # 后向传播,更新权值
lo_delta = lo_error * lo * (1 - lo) # sigmoid函数的导数(梯度下降)
Wi += np.dot(lo_delta, li) print("训练效果:\n", lo)

说明:

  只有两层:输入层/输出层, 本质是感知机

  离线算法:批量学习(numpy矩阵运算的威力在此体现出来了)

  效果还蛮不错:

    极简反传(BP)神经网络

二、三层神经网络

极简反传(BP)神经网络

import numpy as np

'''极简三层反传(BP)神经网络'''

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0]) # 权值矩阵
Wi = 2 * np.random.random((3, 5)) - 1
Wh = 2 * np.random.random(5) - 1 # 训练
for i in range(10000):
# 前向传播,计算误差
li = X
lh = 1 / (1 + np.exp(-np.dot(li, Wi)))
lo = 1 / (1 + np.exp(-np.dot(lh, Wh)))
lo_error = y - lo # 后向传播,更新权值
lo_delta = lo_error * (lo * (1 - lo))
lh_delta = np.outer(lo_delta, Wh) * (lh * (1 - lh)) # 外积!感谢 numpy 的强大!
Wh += np.dot(lh.T, lo_delta)
Wi += np.dot(li.T, lh_delta) print("训练之后:\n", lo)

说明: 增加了一个隐藏层(五个节点)

三、四层神经网络

极简反传(BP)神经网络

import numpy as np

'''极简四层反传(BP)神经网络'''

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0]) # 权值矩阵
Wi = 2 * np.random.random((3, 5)) - 1
Wh1 = 2 * np.random.random((5, 4)) - 1
Wh2 = 2 * np.random.random(4) - 1 # 训练
for i in range(10000):
# 前向传播,计算误差
li = X
lh1 = 1 / (1 + np.exp(-np.dot(li, Wi )))
lh2 = 1 / (1 + np.exp(-np.dot(lh1, Wh1)))
lo = 1 / (1 + np.exp(-np.dot(lh2, Wh2)))
lo_error = y - lo # 后向传播,更新权值
lo_delta = lo_error * (lo * (1 - lo))
lh2_delta = np.outer(lo_delta, Wh2.T) * (lh2 * (1 - lh2))
lh1_delta = np.dot(lh2_delta, Wh1.T) * (lh1 * (1 - lh1)) # 注意:这里是dot! Wh2 += np.dot(lh2.T, lo_delta)
Wh1 += np.dot(lh1.T, lh2_delta)
Wi += np.dot(li.T, lh1_delta) print("训练之后:\n", lo)

说明: 增加了两个隐藏层(五个节点,四个节点)

四、三层神经网络的另一种方式

极简反传(BP)神经网络

import numpy as np

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0]) ni = 3 # 输入层节点数
nh = 5 # 隐藏层节点数
no = 2 # 输出层节点数(注意这里是2!!) # 初始化矩阵、偏置
Wi = np.random.randn(ni, nh) / np.sqrt(ni)
Wh = np.random.randn(nh, no) / np.sqrt(nh)
bh = np.zeros(nh)
bo = np.zeros(no) # 训练
for i in range(1000):
# 前向传播
li = X
lh = np.tanh(np.dot(X, Wi) + bh) # tanh 函数
lo = np.exp(np.dot(lh, Wh) + bo)
probs = lo / np.sum(lo, axis=1, keepdims=True) # 后向传播
lo_delta = probs
lo_delta[range(X.shape[0]), y] += 1 # -=1
lh_delta = np.dot(lo_delta, Wh.T) * (1 - np.power(lh, 2)) # tanh 函数的导数 # 更新权值、偏置
epsilon = 0.01 # 学习速率
lamda = 0.01 # 正则化强度
bo += -epsilon * np.sum(lo_delta, axis=0, keepdims=True).reshape(-1)
Wh += -epsilon * (np.dot(lh.T, lo_delta) + lamda * Wh)
bh += -epsilon * np.sum(lh_delta, axis=0)
Wi += -epsilon * (np.dot(X.T, lh_delta) + lamda * Wi) print("训练之后:\n", np.argmax(probs, axis=1))

说明:

  1. 输出层有两个节点。其原因是样本有两种类别(最值得注意

  2. 添加了偏置、学习速率、正则化强度

  3. 预测结果是: np.argmax(probs, axis=1)

  4. 当然,也可以推广到多个隐藏层的情况

五、任意层数的神经网络

import numpy as np

# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0]) # 神经网络结构,层数任意!
sizes = [3,5,7,2] # 初始化矩阵、偏置
biases = [np.random.randn(j) for j in sizes[1:]]
weights = [np.random.randn(i,j) for i,j in zip(sizes[:-1], sizes[1:])] layers = [None] * len(sizes)
layers[0] = X
layers_delta = [None] * (len(sizes) - 1) epsilon = 0.01 # 学习速率
lamda = 0.01 # 正则化强度 # 训练
for i in range(1000):
# 前向传播
for i in range(1, len(layers)):
layers[i] = 1 / (1 + np.exp(-(np.dot(layers[i-1], weights[i-1]) + biases[i-1]))) # 后向传播
probs = layers[-1] / np.sum(layers[-1], axis=1, keepdims=True)
layers_delta[-1] = probs
layers_delta[-1][range(X.shape[0]), y] += 1
for i in range(len(sizes)-2, 0, -1):
layers_delta[i-1] = np.dot(layers_delta[i], weights[i].T) * (layers[i] * (1 - layers[i])) # 更新权值、偏置
for i in range(len(sizes)-2, -1, -1):
biases[i] -= epsilon * np.sum(layers_delta[i], axis=0)
weights[i] -= epsilon * (np.dot(layers[i].T, layers_delta[i]) + lamda * weights[i]) print("训练之后-->np.argmax(probs, axis=1):\n", np.argmax(probs, axis=1))

说明:

  1. 这只是上一种神经网络的层数的扩展

  2. 通过内部循环,层数可以任意。

  3. 循环次数太大的时候(比如10000),会报RunTimeError,貌似溢出