设要取的物品集合为$S$,$E=n(m-1)+(n-1)m$,$x_T$为覆盖了$T$中至少一个元素的$1\times2$数量
$$\begin{aligned}\sum\limits_{i=1}^\infty i[恰好i次]&=\sum\limits_{i=1}^\infty[\geq i次]\\&=\sum\limits_{i=0}^\infty[i次后未成功]\\&=\sum\limits_{i=0}^\infty\sum\limits_{\substack{T\subseteq S\\T\ne\varnothing}}(-1)^{|T|+1}\left(1-\frac{x_T}E\right)^i\\&=E\sum\limits_{\substack{T\subseteq S\\T\ne\varnothing}}(-1)^{|T|+1}\frac1{x_T}\end{aligned}$$
所以要对每个$1\leq k\leq E$计数有多少个大小为奇数/偶数的集合$T$满足$x_T=k$
考虑按列-行做轮廓线DP,设$f_{i,j,k,0/1}$表示当前DP到第$i$个格子,当前轮廓线上“=*且在$T$中”的状态为$j$,$x_T=k$,$|T|\equiv0/1\pmod2$的$T$的数量
时间复杂度$O(n^2m^22^n)$
#include<stdio.h> #include<string.h> typedef long long ll; const int mod=998244353; int mul(int a,int b){return(ll)a*b%mod;} void inc(int&a,int b){(a+=b)>=mod?a-=mod:0;} int de(int a,int b){return(a-=b)<0?a+mod:a;} int pow(int a,int b){ int s=1; while(b){ if(b&1)s=mul(s,a); a=mul(a,a); b>>=1; } return s; } char s[10][110]; int n,m,E; int inv[1210],f[64][1210][2],g[64][1210][2]; int is(int x,int k){ return k>=0?x>>k&1:0; } int main(){ int i,j,k,l,u,v,res; scanf("%d%d",&n,&m); for(i=1;i<=n;i++)scanf("%s",s[i]+1); E=n*(m-1)+(n-1)*m; inv[1]=1; for(i=2;i<=E;i++)inv[i]=mul(mod/i,mod-inv[mod%i]); f[0][0][0]=1; for(j=1;j<=m;j++){ for(i=1;i<=n;i++){ memset(g,0,sizeof(g)); for(k=0;k<1<<n;k++){ for(l=0;l<=E;l++){ if(!(f[k][l][0]|f[k][l][1]))continue; u=k&~(1<<(i-1)); v=l+is(k,i-1)+is(k,i-2); inc(g[u][v][0],f[k][l][0]); inc(g[u][v][1],f[k][l][1]); if(s[i][j]=='*'){ u=k|(1<<(i-1)); v=l+(i>1)+(j>1); inc(g[u][v][0],f[k][l][1]); inc(g[u][v][1],f[k][l][0]); } } } memcpy(f,g,sizeof(g)); } } res=0; for(i=1;i<=E;i++){ u=v=0; for(j=0;j<1<<n;j++){ inc(u,f[j][i][1]); inc(v,f[j][i][0]); } inc(res,mul(inv[i],de(u,v))); } printf("%d",mul(res,E)); }