朋友
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
B君在围观一群男生和一群女生玩游戏,具体来说游戏是这样的:
给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1。 在一局游戏开始时,会确定一个节点作为根。接下来从女生开始,双方轮流进行 操作。
当一方操作时,他们需要先选择一个不为根的点,满足该点到其父亲的边权为1; 然后找出这个点到根节点的简单路径,将路径上所有边的权值翻转(即0变成1,1 变成0 )。
当一方无法操作时(即所有边的边权均为0),另一方就获得了胜利。
如果在双方均采用最优策略的情况下,女生会获胜,则输出“Girls win!”,否则输 出“Boys win!”。
为了让游戏更有趣味性,在每局之间可能会有修改边权的操作,而且每局游戏指 定的根节点也可能是不同的。
具体来说,修改边权和进行游戏的操作一共有m个,具体如下:
∙“0 x”表示询问对于当前的树,如果以x为根节点开始游戏,哪方会获得胜利。
∙“1 x y z ”表示将x和y之间的边的边权修改为z。
B君当然知道怎么做啦!但是他想考考你。
给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1。 在一局游戏开始时,会确定一个节点作为根。接下来从女生开始,双方轮流进行 操作。
当一方操作时,他们需要先选择一个不为根的点,满足该点到其父亲的边权为1; 然后找出这个点到根节点的简单路径,将路径上所有边的权值翻转(即0变成1,1 变成0 )。
当一方无法操作时(即所有边的边权均为0),另一方就获得了胜利。
如果在双方均采用最优策略的情况下,女生会获胜,则输出“Girls win!”,否则输 出“Boys win!”。
为了让游戏更有趣味性,在每局之间可能会有修改边权的操作,而且每局游戏指 定的根节点也可能是不同的。
具体来说,修改边权和进行游戏的操作一共有m个,具体如下:
∙“0 x”表示询问对于当前的树,如果以x为根节点开始游戏,哪方会获得胜利。
∙“1 x y z ”表示将x和y之间的边的边权修改为z。
B君当然知道怎么做啦!但是他想考考你。
Input
包含至多5组测试数据。
第一行有一个正整数,表示数据的组数。
接下来每组数据第一行,有二个空格隔开的正整数n,m,分别表示点的个数,操 作个数。保证n,m< 40000。
接下来n-1行,每行三个整数x,y,z,表示树的一条边。保证1<x<n, 1<y< n, 0 <= z <= 1。
接下来m行,每行一个操作,含义如前所述。保证一定只会出现前文中提到的两 种格式。
对于操作0,保证1 <= x <= n ;对于操作1,保证1 <= x <= n, 1 <= y <= n, 0 <= z <= 1,保证树上存在一条边连接x和y。
第一行有一个正整数,表示数据的组数。
接下来每组数据第一行,有二个空格隔开的正整数n,m,分别表示点的个数,操 作个数。保证n,m< 40000。
接下来n-1行,每行三个整数x,y,z,表示树的一条边。保证1<x<n, 1<y< n, 0 <= z <= 1。
接下来m行,每行一个操作,含义如前所述。保证一定只会出现前文中提到的两 种格式。
对于操作0,保证1 <= x <= n ;对于操作1,保证1 <= x <= n, 1 <= y <= n, 0 <= z <= 1,保证树上存在一条边连接x和y。
Output
对于每组数据的每一个询问操作,输出一行“Boys win!”或者“Girls win!”。
Sample Input
2
2 3
1 2 0
0 1
1 2 1 1
0 2
4 11
1 2 1
2 3 1
3 4 0
0 1
0 2
0 3
0 4
1 2 1 0
0 1
0 2
0 3
1 3 4 1
0 3
0 4
2 3
1 2 0
0 1
1 2 1 1
0 2
4 11
1 2 1
2 3 1
3 4 0
0 1
0 2
0 3
0 4
1 2 1 0
0 1
0 2
0 3
1 3 4 1
0 3
0 4
Sample Output
Boys win!
Girls win!
Girls win!
Boys win!
Girls win!
Boys win!
Boys win!
Girls win!
Girls win!
Boys win!
Girls win!
Girls win!
Girls win!
Boys win!
Girls win!
Boys win!
Boys win!
Girls win!
Girls win!
Boys win!
Girls win!
Source
思路:对于每个链,取第一个儿子的w即可;
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long ll;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 1e5+, maxn = 1e3+, inf = 2e9;
struct edge
{
int v,w;
int nex;
}edge[N];
int head[N];
int edg;
void init()
{
memset(head,-,sizeof(head));
edg=;
}
void add(int u,int v,int w)
{
edg++;
edge[edg].v=v;
edge[edg].w=w;
edge[edg].nex=head[u];
head[u]=edg;
}
int main(){
int T;
scanf("%d",&T);
while(T--)
{
init();
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
while(m--)
{
int hh;
scanf("%d",&hh);
if(hh==)
{
int x;
scanf("%d",&x);
int ANS=;
for(int i=head[x];i!=-;i=edge[i].nex)
{
int w=edge[i].w;
ANS^=w;
}
if(ANS)
printf("Girls win!\n");
else
printf("Boys win!\n");
}
else
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
for(int i=head[u];i!=-;i=edge[i].nex)
{
if(edge[i].v==v)
{
edge[i].w=w;
break;
}
}
for(int i=head[v];i!=-;i=edge[i].nex)
{
if(edge[i].v==u)
{
edge[i].w=w;
break;
}
}
}
}
}
return ;
}