bzoj 2245 [SDOI2011]工作安排(最小费用最大流)

时间:2022-07-22 05:39:13

2245: [SDOI2011]工作安排

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 1197  Solved: 580
[Submit][Status][Discuss]

Description

你的公司接到了一批订单。订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件。公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别。一件产品必须完整地由一名员工制造,不可以由某名员工制造一部分配件后,再转交给另外一名员工继续进行制造。

我们用一个由0和1组成的m*n的矩阵A来描述每名员工能够制造哪些产品。矩阵的行和列分别被编号为1~m和1~n,Ai,j为1表示员工i能够制造产品j,为0表示员工i不能制造产品j。


果公司分配了过多工作给一名员工,这名员工会变得不高兴。我们用愤怒值来描述某名员工的心情状态。愤怒值越高,表示这名员工心情越不爽,愤怒值越低,表示
这名员工心情越愉快。员工的愤怒值与他被安排制造的产品数量存在某函数关系,鉴于员工们的承受能力不同,不同员工之间的函数关系也是有所区别的。

对于员工i,他的愤怒值与产品数量之间的函数是一个Si+1段的分段函数。当他制造第1~Ti,1件产品时,每件产品会使他的愤怒值增加Wi,1,当他制造第Ti,1+1~Ti,2件产品时,每件产品会使他的愤怒值增加Wi,2……为描述方便,设Ti,0=0,Ti,si+1=+∞,那么当他制造第Ti,j-1+1~Ti,j件产品时,每件产品会使他的愤怒值增加Wi,j, 1≤j≤Si+1。

你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小。由于我们并不想使用Special Judge,也为了使选手有更多的时间研究其他两道题目,你只需要输出最小的愤怒值之和就可以了。

Input

第一行包含两个正整数m和n,分别表示员工数量和产品的种类数;

第二行包含n 个正整数,第i个正整数为Ci

以下m行每行n 个整数描述矩阵A;

下面m个部分,第i部分描述员工i的愤怒值与产品数量的函数关系。每一部分由三行组成:第一行为一个非负整数Si,第二行包含Si个正整数,其中第j个正整数为Ti,j,如果Si=0那么输入将不会留空行(即这一部分只由两行组成)。第三行包含Si+1个正整数,其中第j个正整数为Wi,j

Output

仅输出一个整数,表示最小的愤怒值之和。

Sample Input

2 3

2 2 2

1 1 0

0 0 1

1

2

1 10

1

2

1 6

Sample Output

24

HINT

 

Source

【思路】

最小费用最大流。

构图连边。关于分段函数:只要连Tj-Tj-1容量W费用的边即可,因为题目中有Wi,j <Wi,j+1,所以简单地跑最小费用最大流。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; typedef long long LL;
const int maxn = +;
const LL INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int& flow,LL& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
flow+=a[t] , cost+= (LL) a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,LL& cost) {
int flow=; cost=;
while(SPFA(s,t,flow,cost)) ;
return flow;
}
} mc; int n,m;
int t[maxn]; int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&m,&n);
mc.init(m+n+);
int S=m+n,T=S+;
int c;
FOR(i,,n) {
scanf("%d",&c);
mc.AddEdge(m+i,T,c,);
}
FOR(i,,m) FOR(j,,n) {
scanf("%d",&c);
if(c) mc.AddEdge(i,j+m,INF,);
}
FOR(i,,m) {
scanf("%d",&c);
FOR(j,,c) scanf("%d",&t[j]); t[c]=INF;
int w,tt;
FOR(j,,c+) {
scanf("%d",&w);
tt = j==? t[]:t[j]-t[j-];
mc.AddEdge(S,i,tt,w);
}
}
LL cost;
mc.Mincost(S,T,cost);
printf("%lld\n",cost);
return ;
}