题意:自己看吧(不是很好说)
分析:
网络流:最大权闭合子图。
思路如下:
首先将点分为3类
第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分)
第二类:原串中的n个点每个点拆出一个点,第i个点权值为 –a[s[i]] (表示要花费)
第三类:对于10种字符拆出10个点,每个点的权值为 -(b[x]-a[x])
那么我们可以得到一个关系图 ,对于第一类中的点Pij,如果想要选择Pij,你就必须要选中第二类中的点i和j,对于第二类中的点如果你想选中第i个点,其对应的字符s[i],那么就必须选中第三类中s[i] 对应的点,因为每个种类的点第一次选中时花费是b[s[i]],而第二类中花费都是a[s[i]],一定要补上b[s[i]]-a[s[i]],而且只需要补上一次。
得到上面的关系图后然后就是普通的最大权闭合子图问题,直接求解即可。
注:吐槽,我想说真的是神思路,加网络流大法好,我只想说没有刷过网络流24题的人伤不起啊
首先想会做这个题,必须会最大权闭合子图的概念,这个是网络流24题之一(多刷题就是好),但是就算是会了这个建图,也不一定会做这个题
虽然说这个题看数据范围什么的,限制条件这么多的,差不多能想到是网络流,但是伤在不会建图啊
这个题很巧妙的点,就是一个子序列的贡献是每两个不同点组成的,这是独立的,只和这两个元素有关,和序列的其它元素无关,这样每两个元素就可以虚拟一个点了
然后按照题解建成有向图,对于u-->v,选u必须选v 对于这种图的求最大方案,显然就是求最大权闭合图
如何建图,请见http://www.cnblogs.com/kane0526/archive/2013/04/05/3001557.html(可以顺便把这个题做一下,是个裸题)
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn=4e4+;
struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int c,int d):from(u),to(v),cap(c),flow(d) {}
};
struct dinic
{
int s,t;
vector<Edge>edges;
vector<int>G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn];
void init(){
for(int i=;i<maxn;++i)G[i].clear();
edges.clear();
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=; i<G[x].size(); i++)
{
Edge &e= edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==)return a;
int flow=,f;
for(int &i=cur[x]; i<G[x].size(); i++)
{
Edge &e=edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow))))
{
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==)break;
}
}
return flow;
}
LL maxflow(int s,int t)
{
this->s=s;
this->t=t;
LL flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
void addedge(int u,int v,int c)
{
Edge x(u,v,c,),y(v,u,,);
edges.push_back(x);
edges.push_back(y);
int l=edges.size();
G[u].push_back(l-);
G[v].push_back(l-);
}
}solve;
int a[],b[],T,n,w[][],kase;
char s[];
int main(){
scanf("%d",&T);
while(T--){
solve.init();
scanf("%d%s",&n,s+);
for(int i=;i<=;++i)
scanf("%d%d",&a[i],&b[i]);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
scanf("%d",&w[i][j]);
int cnt=,p=n*(n-)/;
LL sum=;
for(int i=;i<n;++i){
for(int j=i+;j<=n;++j){
++cnt;
if(w[i][j]+w[j][i]>){
solve.addedge(,cnt,w[i][j]+w[j][i]);
sum+=w[i][j]+w[j][i];
}
solve.addedge(cnt,p+i,INF);
solve.addedge(cnt,p+j,INF);
}
}
int t=cnt+n+;
for(int i=;i<=n;++i){
if(a[s[i]-''+]>)
solve.addedge(cnt+i,t,a[s[i]-''+]);
solve.addedge(cnt+i,cnt+n+s[i]-''+,INF);
}
for(int i=cnt+n+;i<=cnt+n+;++i)
if(b[i-cnt-n]-a[i-cnt-n]>)
solve.addedge(i,t,b[i-cnt-n]-a[i-cnt-n]);
printf("Case #%d: %I64d\n",++kase,sum-solve.maxflow(,t));
}
return ;
}