CF1083E The Fair Nut and Rectangles

时间:2022-12-30 05:27:08

CF1083E The Fair Nut and Rectangles

给定 \(n\) 个平面直角坐标系中左下角为坐标原点,右上角为 \((x_i,\ y_i)\) 的互不包含的矩形,每一个矩形拥有权值 \(a_i\) 。你的任务是选出若干个矩形,使得选出的矩形的面积并减去矩形的权值之和尽可能大。输出最大值。

\(1\leq n\leq10^6,\ 1\leq x_i,\ y_i\leq10^9,\ 0\leq a_i\leq x_i\cdot y_i\)

斜率优化


因为所有矩阵互不包含,所以先按 \(x_i\) 升序, \(y_i\) 降序排个序

令 \(f_i\) 为,截止第 \(i\) 个矩阵,选取任意个矩阵所能得到的最大值

则: $$f_i=\displaystyle\max_{j<i}{f_j+S_i-S_i\cap S_j-a_i}$$

因为 \(x_i\) 升序, \(y_i\) 降序,所以 $$f_i=\displaystyle\max_{j<i}{f_j+x_iy_i+x_jy_i-a_i}$$

接着套路地化式子,得到 $$f_j=y_ix_j+f_i+a_i-x_iy_i$$

令 \(Y=f_j,\ K=y_i,\ X=x_j\) ,因为 \(y_i\) 单调递减,所以直接维护即可

时间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std; #define nc getchar()
typedef long long ll;
typedef long double db;
const int maxn = 1e6 + 10;
ll f[maxn];
int n, q[maxn]; struct node {
ll x, y, w;
bool operator < (const node& o) const {
return y > o.y;
}
} a[maxn]; inline ll read() {
ll x = 0;
char c = nc;
while (c < 48) c = nc;
while (c > 47) x = (x << 3) + (x << 1) + (c ^ 48), c = nc;
return x;
} db slope(int x, int y) {
return a[x].x == a[y].x ? 1e18 : db(f[x] - f[y]) / db(a[x].x - a[y].x);
} int main() {
n = read();
for (int i = 1; i <= n; i++) {
a[i].x = read();
a[i].y = read();
a[i].w = read();
}
ll ans = 0;
int l = 1, r = 1;
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++) {
while (l < r && slope(q[l], q[l + 1]) > a[i].y) l++;
f[i] = f[q[l]] + (a[i].x - a[q[l]].x) * a[i].y - a[i].w;
while (l < r && slope(q[r - 1], q[r]) < slope(q[r], i)) r--;
q[++r] = i, ans = max(ans, f[i]);
}
printf("%I64d", ans);
return 0;
}

orz \(\color{black}{S}\color{red}{ooke}\)