题目大意
https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/
230. Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
给定一棵二叉搜索树(BST),编写一个函数kthSmallest找出其中第k小的元素。
注意:
你可以假设k总是有效的, 1 ≤ k ≤ BST的元素总数。
进一步思考:
如果BST的修改(插入/删除)操作十分频繁,并且需要频繁地找出第k小的元素,应该怎样优化kthSmallest函数?
解题思路
BST具有如下性质:
- 左子树中所有元素的值均小于根节点的值
- 右子树中所有元素的值均大于根节点的值
因此采用中序遍历(左 -> 根 -> 右)即可以递增顺序访问BST中的节点,从而得到第k小的元素,时间复杂度O(k)
Python代码:
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None class Solution(object):
def kthSmallest(self, root, k): # 52 ms
"""
:type root: TreeNode
:type k: int
:rtype: int
"""
stack = []
node = root
while node:
stack.append(node)
node = node.left
x = 1
while stack and x <= k:
node = stack.pop()
x += 1
right = node.right
while right:
stack.append(right)
right = right.left
return node.val
递归方式:
class Solution(object):
def kthSmallest(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: int
"""
cnt = []
self.helper(root, cnt, k)
return cnt[k - 1] def helper(self, node, cnt, k):
if not node:
return None
self.helper(node.left, cnt, k)
cnt.append(node.val)
if len(cnt) == k: # 56 ms <= 96ms
return None
self.helper(node.right, cnt, k)
进一步思考:
如果BST节点TreeNode的属性可以扩展,则再添加一个属性leftCnt,记录左子树的节点个数
记当前节点为node
当node不为空时循环:
若k == node.leftCnt + 1:则返回node
否则,若k > node.leftCnt:则令k -= node.leftCnt + 1,令node = node.right
否则,node = node.left
上述算法时间复杂度为O(BST的高度)
参考
http://bookshadow.com/weblog/2015/07/02/leetcode-kth-smallest-element-bst/
https://leetcode.com/problems/kth-smallest-element-in-a-bst/discuss/63660/3-ways-implemented-in-JAVA-(Python):-Binary-Search-in-order-iterative-and-recursive