I have a problem with removing the duplicates. My program is based around a loop which generates tuples (x,y) which are then used as nodes in a graph. The final array/matrix of nodes is :
我有一个删除重复的问题。我的程序基于一个循环,该循环生成元组(x,y),然后在图中作为节点使用。节点的最终数组/矩阵为:
[[ 1. 1. ]
[ 1.12273268 1.15322175]
[..........etc..........]
[ 0.94120695 0.77802849]
**[ 0.84301344 0.91660517]**
[ 0.93096269 1.21383287]
**[ 0.84301344 0.91660517]**
[ 0.75506418 1.0798641 ]]
The length of the array is 22. Now, I need to remove the duplicate entries (see **). So I used:
数组的长度是22。现在,我需要删除重复的条目(参见**)。所以我使用:
def urows(array):
df = pandas.DataFrame(array)
df.drop_duplicates(take_last=True)
return df.drop_duplicates(take_last=True).values
Fantastic, but I still get :
太棒了,但我还是得到:
0 1
0 1.000000 1.000000
....... etc...........
17 1.039400 1.030320
18 0.941207 0.778028
**19 0.843013 0.916605**
20 0.930963 1.213833
**21 0.843013 0.916605**
So drop duplicates is not removing anything. I tested to see if the nodes where actually the same and I get:
所以删除复制不会删除任何东西。我测试了这些节点是否相同,我得到:
print urows(total_nodes)[19,:]
---> [ 0.84301344 0.91660517]
print urows(total_nodes)[21,:]
---> [ 0.84301344 0.91660517]
print urows(total_nodes)[12,:] - urows(total_nodes)[13,:]
---> [ 0. 0.]
Why is it not working ??? How can I remove those duplicate values ???
为什么它不工作?如何删除重复的值?
One more question....
一个问题....
Say two values are "nearly" equal (say x1 and x2), is there any way to replace them in a way that they are both equal ???? What I want is to replace x2 with x1 if they are "nearly" equal.
假设两个值“接近”相等(比如x1和x2),有没有什么方法可以替换它们,使它们都相等???我想用x1替换x2如果它们“接近”相等。
2 个解决方案
#1
5
If I copy-paste in your data, I get:
如果我复制粘贴你的数据,我得到:
>>> df
0 1
0 1.000000 1.000000
1 1.122733 1.153222
2 0.941207 0.778028
3 0.843013 0.916605
4 0.930963 1.213833
5 0.843013 0.916605
6 0.755064 1.079864
>>> df.drop_duplicates()
0 1
0 1.000000 1.000000
1 1.122733 1.153222
2 0.941207 0.778028
3 0.843013 0.916605
4 0.930963 1.213833
6 0.755064 1.079864
so it is actually removed, and your problem is that the arrays aren't exactly equal (though their difference rounds to 0 for display).
所以它实际上被删除了,你的问题是数组并不完全相等(尽管它们的差值为0)。
One workaround would be to round the data to however many decimal places are applicable with something like df.apply(np.round, args=[4])
, then drop the duplicates. If you want to keep the original data but remove rows that are duplicate up to rounding, you can use something like
一种解决方法是将数据四舍五入到df.apply(np)之类的东西可以使用的任何小数点位。圆形,args=[4]),然后删除重复。如果您希望保留原始数据,但删除重复到舍入的行,可以使用以下方法
df = df.ix[~df.apply(np.round, args=[4]).duplicated()]
Here's one really clumsy way to do what you're asking for with setting nearly-equal values to be actually equal:
这里有一种很笨拙的方法来实现你的要求将接近相等的值设为相等:
grouped = df.groupby([df[i].round(4) for i in df.columns])
subbed = grouped.apply(lambda g: g.apply(lambda row: g.irow(0), axis=1))
subbed.drop_index(level=list(df.columns), drop=True, inplace=True)
This reorders the dataframe, but you can then call .sort()
to get them back in the original order if you need that.
这将重新订购dataframe,但是您可以调用.sort(),以便在需要时按原始顺序将它们恢复到原来的顺序。
Explanation: the first line uses groupby
to group the data frame by the rounded values. Unfortunately, if you give a function to groupby it applies it to the labels rather than the rows (so you could maybe do df.groupby(lambda k: np.round(df.ix[k], 4))
, but that sucks too).
说明:第一行使用groupby按圆角值对数据帧进行分组。不幸的是,如果你给groupby一个函数,它会将它应用到标签而不是行(所以你可以使用df。groupby(λk:np.round(df。ix[k], 4),但那也很糟糕。
The second line uses the apply
method on groupby to replace the dataframe of near-duplicate rows, g
, with a new dataframe g.apply(lambda row: g.irow(0), axis=1)
. That uses the apply
method on dataframes to replace each row with the first row of the group.
第二行使用groupby上的apply方法,用一个新的dataframe替换几乎重复的行g的dataframe。应用(λ行:g.irow(0)轴= 1)。使用dataframes上的apply方法将每一行替换为该组的第一行。
The result then looks like
结果是这样的
0 1
0 1
0.7551 1.0799 6 0.755064 1.079864
0.8430 0.9166 3 0.843013 0.916605
5 0.843013 0.916605
0.9310 1.2138 4 0.930963 1.213833
0.9412 0.7780 2 0.941207 0.778028
1.0000 1.0000 0 1.000000 1.000000
1.1227 1.1532 1 1.122733 1.153222
where groupby
has inserted the rounded values as an index. The reset_index
line then drops those columns.
其中groupby将四舍五入的值作为索引插入。然后reset_index行删除这些列。
Hopefully someone who knows pandas better than I do will drop by and show how to do this better.
希望那些比我更了解熊猫的人能来参观并展示如何做得更好。
#2
1
Similar to @Dougal answer, but in a slightly different way
类似于@Dougal,但方式略有不同
In [20]: df.ix[~(df*1e6).astype('int64').duplicated(cols=[0])]
Out[20]:
0 1
0 1.000000 1.000000
1 1.122733 1.153222
2 0.941207 0.778028
3 0.843013 0.916605
4 0.930963 1.213833
6 0.755064 1.079864
#1
5
If I copy-paste in your data, I get:
如果我复制粘贴你的数据,我得到:
>>> df
0 1
0 1.000000 1.000000
1 1.122733 1.153222
2 0.941207 0.778028
3 0.843013 0.916605
4 0.930963 1.213833
5 0.843013 0.916605
6 0.755064 1.079864
>>> df.drop_duplicates()
0 1
0 1.000000 1.000000
1 1.122733 1.153222
2 0.941207 0.778028
3 0.843013 0.916605
4 0.930963 1.213833
6 0.755064 1.079864
so it is actually removed, and your problem is that the arrays aren't exactly equal (though their difference rounds to 0 for display).
所以它实际上被删除了,你的问题是数组并不完全相等(尽管它们的差值为0)。
One workaround would be to round the data to however many decimal places are applicable with something like df.apply(np.round, args=[4])
, then drop the duplicates. If you want to keep the original data but remove rows that are duplicate up to rounding, you can use something like
一种解决方法是将数据四舍五入到df.apply(np)之类的东西可以使用的任何小数点位。圆形,args=[4]),然后删除重复。如果您希望保留原始数据,但删除重复到舍入的行,可以使用以下方法
df = df.ix[~df.apply(np.round, args=[4]).duplicated()]
Here's one really clumsy way to do what you're asking for with setting nearly-equal values to be actually equal:
这里有一种很笨拙的方法来实现你的要求将接近相等的值设为相等:
grouped = df.groupby([df[i].round(4) for i in df.columns])
subbed = grouped.apply(lambda g: g.apply(lambda row: g.irow(0), axis=1))
subbed.drop_index(level=list(df.columns), drop=True, inplace=True)
This reorders the dataframe, but you can then call .sort()
to get them back in the original order if you need that.
这将重新订购dataframe,但是您可以调用.sort(),以便在需要时按原始顺序将它们恢复到原来的顺序。
Explanation: the first line uses groupby
to group the data frame by the rounded values. Unfortunately, if you give a function to groupby it applies it to the labels rather than the rows (so you could maybe do df.groupby(lambda k: np.round(df.ix[k], 4))
, but that sucks too).
说明:第一行使用groupby按圆角值对数据帧进行分组。不幸的是,如果你给groupby一个函数,它会将它应用到标签而不是行(所以你可以使用df。groupby(λk:np.round(df。ix[k], 4),但那也很糟糕。
The second line uses the apply
method on groupby to replace the dataframe of near-duplicate rows, g
, with a new dataframe g.apply(lambda row: g.irow(0), axis=1)
. That uses the apply
method on dataframes to replace each row with the first row of the group.
第二行使用groupby上的apply方法,用一个新的dataframe替换几乎重复的行g的dataframe。应用(λ行:g.irow(0)轴= 1)。使用dataframes上的apply方法将每一行替换为该组的第一行。
The result then looks like
结果是这样的
0 1
0 1
0.7551 1.0799 6 0.755064 1.079864
0.8430 0.9166 3 0.843013 0.916605
5 0.843013 0.916605
0.9310 1.2138 4 0.930963 1.213833
0.9412 0.7780 2 0.941207 0.778028
1.0000 1.0000 0 1.000000 1.000000
1.1227 1.1532 1 1.122733 1.153222
where groupby
has inserted the rounded values as an index. The reset_index
line then drops those columns.
其中groupby将四舍五入的值作为索引插入。然后reset_index行删除这些列。
Hopefully someone who knows pandas better than I do will drop by and show how to do this better.
希望那些比我更了解熊猫的人能来参观并展示如何做得更好。
#2
1
Similar to @Dougal answer, but in a slightly different way
类似于@Dougal,但方式略有不同
In [20]: df.ix[~(df*1e6).astype('int64').duplicated(cols=[0])]
Out[20]:
0 1
0 1.000000 1.000000
1 1.122733 1.153222
2 0.941207 0.778028
3 0.843013 0.916605
4 0.930963 1.213833
6 0.755064 1.079864