在熊猫数据存储器中找到唯一的值,不论行或列的位置

时间:2021-05-21 04:26:07

I have a Pandas dataframe and I want to find all the unique values in that dataframe...irrespective of row/columns. If I have a 10 x 10 dataframe, and suppose they have 84 unique values, I need to find them - Not the count.

我有一个熊猫dataframe,我想在这个dataframe中找到所有唯一的值。无论行/列。如果我有一个10×10的dataframe,假设它们有84个唯一值,我需要找到它们——而不是计数。

I can create a set and add the values of each rows by iterating over the rows of the dataframe. But, I feel that it may be inefficient (cannot justify that). Is there an efficient way to find it? Is there a predefined function?

我可以通过遍历dataframe的行来创建一个集合并添加每个行的值。但是,我觉得它可能是低效的(不能证明这一点)。有有效的方法找到它吗?有预定义的函数吗?

2 个解决方案

#1


74  

In [1]: df = DataFrame(np.random.randint(0,10,size=100).reshape(10,10))

In [2]: df
Out[2]: 
   0  1  2  3  4  5  6  7  8  9
0  2  2  3  2  6  1  9  9  3  3
1  1  2  5  8  5  2  5  0  6  3
2  0  7  0  7  5  5  9  1  0  3
3  5  3  2  3  7  6  8  3  8  4
4  8  0  2  2  3  9  7  1  2  7
5  3  2  8  5  6  4  3  7  0  8
6  4  2  6  5  3  3  4  5  3  2
7  7  6  0  6  6  7  1  7  5  1
8  7  4  3  1  0  6  9  7  7  3
9  5  3  4  5  2  0  8  6  4  7

In [13]: Series(df.values.ravel()).unique()
Out[13]: array([9, 1, 4, 6, 0, 7, 5, 8, 3, 2])

Numpy unique sorts, so its faster to do it this way (and then sort if you need to)

Numpy唯一排序,所以这样做更快(如果需要的话,还可以排序)

In [14]: df = DataFrame(np.random.randint(0,10,size=10000).reshape(100,100))

In [15]: %timeit Series(df.values.ravel()).unique()
10000 loops, best of 3: 137 ᄉs per loop

In [16]: %timeit np.unique(df.values.ravel())
1000 loops, best of 3: 270 ᄉs per loop

#2


5  

Or you can use:

或者你可以使用:

df.stack().unique()

.unique df.stack()()

Then you don't need to worry if you have NaN values, as they are excluded when doing the stacking.

那么,如果您有NaN值,就不需要担心了,因为在进行堆栈时,它们被排除在外。

#1


74  

In [1]: df = DataFrame(np.random.randint(0,10,size=100).reshape(10,10))

In [2]: df
Out[2]: 
   0  1  2  3  4  5  6  7  8  9
0  2  2  3  2  6  1  9  9  3  3
1  1  2  5  8  5  2  5  0  6  3
2  0  7  0  7  5  5  9  1  0  3
3  5  3  2  3  7  6  8  3  8  4
4  8  0  2  2  3  9  7  1  2  7
5  3  2  8  5  6  4  3  7  0  8
6  4  2  6  5  3  3  4  5  3  2
7  7  6  0  6  6  7  1  7  5  1
8  7  4  3  1  0  6  9  7  7  3
9  5  3  4  5  2  0  8  6  4  7

In [13]: Series(df.values.ravel()).unique()
Out[13]: array([9, 1, 4, 6, 0, 7, 5, 8, 3, 2])

Numpy unique sorts, so its faster to do it this way (and then sort if you need to)

Numpy唯一排序,所以这样做更快(如果需要的话,还可以排序)

In [14]: df = DataFrame(np.random.randint(0,10,size=10000).reshape(100,100))

In [15]: %timeit Series(df.values.ravel()).unique()
10000 loops, best of 3: 137 ᄉs per loop

In [16]: %timeit np.unique(df.values.ravel())
1000 loops, best of 3: 270 ᄉs per loop

#2


5  

Or you can use:

或者你可以使用:

df.stack().unique()

.unique df.stack()()

Then you don't need to worry if you have NaN values, as they are excluded when doing the stacking.

那么,如果您有NaN值,就不需要担心了,因为在进行堆栈时,它们被排除在外。