题目
Given a string, you are supposed to output the length of the longest symmetric sub-string. For example, given Is PAT&TAP symmetric?, the longest symmetric sub-string is s PAT&TAP s, hence you must output 11.
Input Specification:
Each input file contains one test case which gives a non-empty string of length no more than 1000.
Output Specification:
For each test case, simply print the maximum length in a line.
Sample Input:
Is PAT&TAP symmetric?
Sample Output:
11
题目解析
给定一个字符串,要求输出它最长回文子串的长度。
什么是回文子串,就是类似 baab aacaa
这种中心对称的字符串。
注意,输入字符串可能包括空格,所以这里使用getline(cin,str)
思路一:中心扩展法
所谓中心扩展法,就是从回文串“中心对称”这个特点来的。
我们先分析一下这个“对称”,如果是奇数长度的字符串,那么它关于最中心的那个字符对称;如果是偶数长度的字符串,它的对称线是最中心两个字符的中间画一条线(比如baab
),也就是关于最中心两个字符(aa
)是对称的(那两个字符是一样的)
所以中心扩展法的思路就是,把某个位置作为中间位置,向两边扩展,直到左右指针对应位置字符不等。
那么对于一个字符串,中心位置如何取,如果以每个字符作为中心,那么我们就能找到它所有长度为奇数的最长对称串的长度,以连续两个字符作为中心,救能得到所有长度为偶数的最长的对称串的长度,然后我们再二者之间取最大值即可。
文字描述比较抽象,直接看代码,挺容易理解的。
#include <iostream>
using namespace std;
// 中心扩展法
int helper(string s, int leftborder,int l,int r,int rightborder) {
// 向两端无限扩展
while(leftborder <= l && s[l] == s[r] && r <= rightborder) {
--l;++r;
}
// 已记录的有效回文串长度
return r - l - 1;
}
int main() {
string s;
getline(cin, s);
int len = s.length();
int res = 0;
for (int i = 0; i < len; ++i) {
// 以本身为中心,像左右扩展
int len1 = helper(s, 0, i, i, len - 1);
// 以自己和下一个字符为中心,向左右扩展
int len2 = helper(s, 0, i, i + 1, len - 1);
res = max(res, len1);
// 总是取更大那个
res = max(res, len2);
}
cout << res;
}
思路二:动态规划
思路一里面对于每个字符都要进行两次中心扩展,肯定进行了很多次重复操作,而动态规划就是为解决重复操作而生的。
把一个字符串表示为 s[0],s[1]...s[i],s[i+1],s[i+2]...s[j-2],s[j-1],s[j]...s[len-1]
- 如果
s[i+1,j-1]
是回文串,那么只要s[i] == s[j]
,就可以确定s[i][j]
也是回文串 - 长度为
1
和2
时的子串需单独判断 -
dp[i][j]
代表s[i][j]
是不是回文子串
动态规划的核心就是由子问题状态保留,不再重新计算,对于一个长度为len
的字符串,它的每个子串长度可以是 1到len
,我们从小到大取出所有长度的子串进行判断。
#include<iostream>
using namespace std;
int main() {
string s;
getline(cin, s);
int len = s.length();
int res = 0;
bool dp[len][len] = {false};
int maxLen = 0;
//对于所有长度的子串
for (int len = 1; len <= s.length(); len++)
for (int i = 0; i < s.length(); i++) {
int j = i + len - 1; // i是起点,j是终点,长度是len
// 当前情况不可能,不存在从i开始长为len的子串
if (j >= s.length()) break;
//长度是1就是单个字符,满足回文
if (len == 1) dp[i][j] = true;
// 长度是2就看这两个字符是否相等
else if (len == 2) dp[i][j] = s[i] == s[j];
// 否则,如果 S[i+1,j-1] 是回文串,只要 S[i] == S[j],S[i][j]也是回文串
else dp[i][j] = dp[i + 1][j - 1] && s[i] == s[j];
// 当前串是回文串且比上一次的更长
if (dp[i][j] && len > maxLen) {
maxLen = len;
}
}
cout << maxLen;
return 0;
}
感觉动态规划会比中心扩展更快,但提交结果是中心扩展更快,真是脑壳痛。。