PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

时间:2021-04-23 04:07:30
1146 Topological Order (25 分)
 

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

题意:

做这题之前首先要先去了解什么是拓扑排序,可以参考https://blog.csdn.net/qq_35644234/article/details/60578189

给出一个图,再给几组数据,让你判断这几组数据是否符合拓扑排序

题解:

保存入度数和出度的节点。用一个数组来统计每个点的入度,vector保存出度的节点,然后就可以开始判断。在判断的时候,将与这个点去掉,就是指这个点连接的所有点的入度都减了1。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,u,v;
int in[],inx[];
vector<int>out[];
int main(){
cin>>n>>m;
memset(in,,sizeof(in));
for(int i=;i<=m;i++){
cin>>u>>v;
out[u].push_back(v);//保存出去的节点
in[v]++; //计算入度
}
int k;
cin>>k;
int a[];
int num=;
for(int i=;i<k;i++){
int f=;
memcpy(inx, in, sizeof(in));//将in拷贝给inx
for(int j=;j<=n;j++){
cin>>u;
if(inx[u]!=||f==){
f=;
continue;
}
for(int p=;p<out[u].size();p++){//对受影响的节点的入度--
inx[out[u].at(p)]--;
}
}
if(!f){
a[++num]=i;
}
}
for(int i=;i<=num;i++){
cout<<a[i];
if(i!=num) cout<<" ";
}
return ;
}