faster rcnn修改demo.py保存网络中间结果

时间:2021-08-12 04:07:04

faster rcnn用python版本https://github.com/rbgirshick/py-faster-rcnn

以demo.py中默认网络VGG16.

原本demo.py地址https://github.com/rbgirshick/py-faster-rcnn/blob/master/tools/demo.py

图有点多,贴一个图的本分结果出来:

faster rcnn修改demo.py保存网络中间结果

上图是原图,下面第一张是网络中命名为“conv1_1”的结果图;第二张是命名为“rpn_cls_prob_reshape”的结果图;第三张是“rpnoutput”的结果图

faster rcnn修改demo.py保存网络中间结果faster rcnn修改demo.py保存网络中间结果faster rcnn修改demo.py保存网络中间结果

看一下我修改后的代码:

#!/usr/bin/env python

# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------

"""
Demo script showing detections in sample images.

See README.md for installation instructions before running.
"""

import _init_paths
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from fast_rcnn.nms_wrapper import nms
from utils.timer import Timer
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import caffe, os, sys, cv2
import argparse
import math

CLASSES = ('__background__',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')

NETS = {'vgg16': ('VGG16',
'VGG16_faster_rcnn_final.caffemodel'),
'zf': ('ZF',
'ZF_faster_rcnn_final.caffemodel')}


def vis_detections(im, class_name, dets, thresh=0.5):
"""Draw detected bounding boxes."""
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0:
return

im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(im, aspect='equal')
for i in inds:
bbox = dets[i, :4]
score = dets[i, -1]

ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='red', linewidth=3.5)
)
ax.text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=14, color='white')

ax.set_title(('{} detections with '
'p({} | box) >= {:.1f}').format(class_name, class_name,
thresh),
fontsize=14)
plt.axis('off')
plt.tight_layout()
#plt.draw()
def save_feature_picture(data, name, image_name=None, padsize = 1, padval = 1):
data = data[0]
#print "data.shape1: ", data.shape
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, 0), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
#print "padding: ", padding
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
#print "data.shape2: ", data.shape

data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
#print "data.shape3: ", data.shape, n
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
#print "data.shape4: ", data.shape
plt.figure()
plt.imshow(data,cmap='gray')
plt.axis('off')
#plt.show()
if image_name == None:
img_path = './data/feature_picture/'
else:
img_path = './data/feature_picture/' + image_name + "/"
check_file(img_path)
plt.savefig(img_path + name + ".jpg", dpi = 400, bbox_inches = "tight")
def check_file(path):
if not os.path.exists(path):
os.mkdir(path)
def demo(net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""

# Load the demo image
im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
im = cv2.imread(im_file)

# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(net, im)
for k, v in net.blobs.items():
if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1:
save_feature_picture(v.data, k.replace("/", ""), image_name)#net.blobs["conv1_1"].data, "conv1_1")
timer.toc()
print ('Detection took {:.3f}s for '
'{:d} object proposals').format(timer.total_time, boxes.shape[0])

# Visualize detections for each class
CONF_THRESH = 0.8
NMS_THRESH = 0.3
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
vis_detections(im, cls, dets, thresh=CONF_THRESH)

def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Faster R-CNN demo')
parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument('--cpu', dest='cpu_mode',
help='Use CPU mode (overrides --gpu)',
action='store_true')
parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
choices=NETS.keys(), default='vgg16')

args = parser.parse_args()

return args

def print_param(net):
for k, v in net.blobs.items():
print (k, v.data.shape)
print ""
for k, v in net.params.items():
print (k, v[0].data.shape)

if __name__ == '__main__':
cfg.TEST.HAS_RPN = True # Use RPN for proposals

args = parse_args()

prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
#print "prototxt: ", prototxt
caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
NETS[args.demo_net][1])

if not os.path.isfile(caffemodel):
raise IOError(('{:s} not found.\nDid you run ./data/script/'
'fetch_faster_rcnn_models.sh?').format(caffemodel))

if args.cpu_mode:
caffe.set_mode_cpu()
else:
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
cfg.GPU_ID = args.gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)

#print_param(net)

print '\n\nLoaded network {:s}'.format(caffemodel)

# Warmup on a dummy image
im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
for i in xrange(2):
_, _= im_detect(net, im)

im_names = ['000456.jpg', '000542.jpg', '001150.jpg',
'001763.jpg', '004545.jpg']
for im_name in im_names:
print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
print 'Demo for data/demo/{}'.format(im_name)
demo(net, im_name)

#plt.show()
1.在data下手动创建“feature_picture”文件夹就可以替换原来的demo使用了。

2.上面代码主要添加方法是:save_feature_picture,它会对网络测试的某些阶段的数据处理然后保存。

3.某些阶段是因为:if k.find("conv")>-1 or k.find("pool")>-1 or k.find("rpn")>-1这行代码(110行),保证网络层name有这三个词的才会被保存,因为其他层无法用图片

保存,如全连接(参数已经是二维的了)等层。

4.放开174行print_param(net)的注释,就可以看到网络参数的输出。

5.执行的最终结果 是在data/feature_picture产生以图片名字为文件夹名字的文件夹,文件夹下有以网络每层name为名字的图片。

6.另外部分网络的层name中有非法字符不能作为图片名字,我在代码的111行只是把‘字符/’剔除掉了,所以建议网络名字不要又其他字符。

图片下载和代码下载方式:

git clone https://github.com/meihuakaile/faster-rcnn.git