HDU - 3586 Information Disturbing 树形dp二分答案

时间:2022-08-07 03:19:14

HDU - 3586 Information Disturbing

  题目大意:从敌人司令部(1号节点)到前线(叶子节点)的通信路径是一个树形结构,切断每条边的联系都需要花费w权值,现在需要你切断前线和司令部的连接,(就是所有叶子节点都到不了根节点),并且总花费不能超过m。问能够实行的方案中,最大花费的最小值,否则输出-1.

  树形dp的题还是很好意识到用树形dp的,但最好是画一画图进行理解和推导,就像现在我随手画的图(第一次发现可以传图片)。

HDU - 3586 Information Disturbing 树形dp二分答案(画得有点小丑,问题不大)

  现在回到问题,就是我们需要切断1和4,5,6节点联系,那我们有几种选择呢,首先现在6节点,6节点只和3节点相连,3节点和1节点相连,那我们可以通过切断1和3的联系,或者是切断3和6的联系,来实现切断1和6的连接,很明显我们会选择3和6的联系,因为它们的权值较小。推理到左边,要切断1和4,5的联系就有,一.切断1和2的联系,二。切断2和3以及切断2和5的联系这两种,很明显我们会选择切断1和3的联系。我们可以发现如果我们把每个节点视为根节点的话,要切断它和叶子节点的关系无非有两种联系,切断它和它下一级的节点的联系,或者它下一级的节点切断和它所有节点的联系。我们用dp[i]来表示i节点切断它和它所有叶子节点的总花费最小值就有

HDU - 3586 Information Disturbing 树形dp二分答案(字也丑。。。)

  但现在问题是要找到的是一个最大花费的最小值,如果我们直接树形dp跑一遍的话就只能找到一个方案,并且其中的最大值不一定就是最小的,所以我们需要二分一个答案,然后用这个答案作为一个限制去跑树形dp看该方案可不可行?那么怎么实现这个限制呢?我想到的是如果一条边的权值已经大于限制值了,那就让它等于m+1,这样的话如果没有其他能代替它的更小的边,最终总花费肯定是大于m的,也就是方案不可行。其他细节详情见代码如下

  

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
struct Side{
int v,ne,w;
}S[*N];
int sn,n,m,head[N],dp[N];
void add(int u,int v,int c)
{
S[sn].v=v;
S[sn].w=c;
S[sn].ne=head[u];
head[u]=sn++;
}
int dfs(int u,int f,int lim)
{
dp[u]=;
for(int i=head[u];i!=-;i=S[i].ne)
{
int v=S[i].v;
if(v!=f)
{
dfs(v,u,lim);
int cost=(S[i].w>lim ? m+ : S[i].w);//如果权值超过限制,设为m+1
dp[u]+=min(dp[v],cost);//子节点的花费以及相连的边权值中取个最小值
//当前节点加上所有子节点需要切断和叶子节点的花费
}
}
if(dp[u]==)//这个是用来判断它是不是叶子节点的
dp[u]=0x3f3f3f3f;//叶子节点的dp设个最大值,它的父节点只能切断和它相连的边
return dp[u];
}
int main()
{
int a,b,w;
while(scanf("%d%d",&n,&m)&&(n||m))
{
for(int i=;i<=n;i++)
head[i]=-;
int l=,r=;//l所有边中的最小值,r所有边中的最大值
sn=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&a,&b,&w);
add(a,b,w);
add(b,a,w);
l=min(l,w);
r=max(r,w);
}
int ans=-;
while(l<=r)
{
int mid=(l+r)>>;
if(dfs(,,mid)<=m)//判断这个答案是否可行
ans=mid,r=mid-;//可行的话,继续调小
else
l=mid+;
}
printf("%d\n",ans);
}
return ;
}

太君这边请~