找出n之内的完全数, 并输出其因子

时间:2022-01-23 02:58:18

定义:

完全数:所有的真因子(即除了自身以外的约数)的和,恰好等于它本身。例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外约数相加=28。

性质:

(1)所有的完全数都是三角数。例如:6=1+2+3;28=1+2+3+...+6+7;496=1+2+3+...+30+31;8128=1+2+3…+126+127。
(2)所有的完全数的倒数都是调和数。例如:1/1+1/2+1/3+1/6=2;1/1+1/2+1/4+1/7+1/14+1/28=2;1/1+1/2+1/4+1/8+1/16+1/31+1/62+1/124+1/248+1/496=2。
(3)可以表示成连续奇立方数之和。除6以外的完全数,都可以表示成连续奇立方数之和,并规律式增加。例如:28=1³+3^3;496=1^3+3^3+5^3+7^3;8128=1^3+3^3+5^3+……+15^3;33550336=1^3+3^3+5^3+……+125^3+127^3。
(4)都可以表达为2的一些连续正整数次幂之和。不但如此,而且它们的数量为连续质数。例如:6=2^1+2^2;28=2^2+2^3+2^4;496=2^4+2^5+2^6+2^7+2^8;8128=2^6+2^7+2^8+2^9+2^10+2^11+2^12;33550336=2^12+2^13+……+2^24。
(5)完全数都是以6或8结尾。如果以8结尾,那么就肯定是以28结尾。(科学家仍未发现由其他数字结尾的完全数。)
(6)各位数字辗转式相加个位数是1。除6以外的完全数,把它的各位数字相加,直到变成个位数,那么这个个位数一定是1。例如:28:2+8=10,1+0=1;496:4+9+6=19,1+9=10,1+0=1;8128:8+1+2+8=19,1+9=10,1+0=1;33550336:3+3+5+5+0+3+6=28,2+8=10,1+0=1。
(7)它们被3除余1、被9除余1、1/2被27除余1。除6以外的完全数,它们被3除余1,9除余1,还有1/2被27除余1。28/3 商9余1,28/9 商3余1,28/27 商1余1。496/3 商165余1,496/9 商55余1。8128/3 商2709余1,8128/9 商903余1,8128/27 商301余1。
推导公式:
欧拉曾推算出完全数的获得公式:如果p是质数,且2^p-1也是质数,那么(2^p-1)X2^(p-1)便是一个完全数。
例如p=2,是一个质数,2^p-1=3也是质数,(2^p-1)X2^(p-1)=3X2=6,是完全数。
例如p=3,是一个质数,2^p-1=7也是质数,(2^p-1)X2^(p-1)=7X4=28,是完全数。
例如p=5,是一个质数,2^p-1=31也是质数,(2^p-1)X2^(p-1)=31X16=496是完全数。
但是2^p-1什么条件下才是质数呢?事实上,当2^p-1是质数的时候,称其为梅森素数。到2013年2月6日为止,人类只发现了48个梅森素数,较小的有3、7、31、127等。
 
https://baike.baidu.com/item/%E5%AE%8C%E5%85%A8%E6%95%B0
#include <stdio.h>

#define N 100

int main(){
int i,j,k,n,sum,cnt;
int a[N];
sum=cnt=; scanf("%d",&n); for(i=;i<n;i+=){
if(i%==||i%==){
for(j=;j<=i/;j++){
if(i%j==){
sum+=j;
a[cnt++]=j;
if(sum>i){
break;
}
}
}
if(sum==i){
printf("%d its factors are ",i);
for(k=;k<cnt;k++){
printf("%d ",a[k]);
}
printf("\n");
}
sum=;
cnt=;
}
}
return ;
}
程序思路:对N以内的每个数,依次求余,所得因子计数并存入数组,输出。
注意:
1.根据5条可简化完全数判断规则,就目前而言假设完全数的结尾必是6,或28
2.设定计数器cnt来计数因子数
3.因子数小于等于该数的1/2才继续
4.sum大于该数可跳出当前循环
5.每次循环末尾 重置sum和cnt为0