Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output: true
Example 2:
5
/ \
1 4
/ \
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
is 5 but its right child's value is 4.
Solution1: DFS
根据BST的性质: 左子树<根<右子树
要特别留心,对于input的root,没有办法给定一个确定的范围。所以初始化为null
5 (min, max) 5 :in(min,max)?
/ \ / / return true \ \ return false
1 4 1 update(min, 5), in (min, 5)? 4 update(5, 4), in (5,4)?
code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
/*why using null, null? 因为对于root,没有办法确定范围*/
return helper(root, null, null);
}
/* 因为上面定义的是null,这里initialize就应该是Integer而不是int*/
private boolean helper(TreeNode root, Integer min, Integer max) {
// base case
if (root == null)return true; // based on BST attribute
if ((min != null && root.val <= min) || (max != null && root.val >= max))
return false; // dfs
Boolean left = helper(root.left, min, root.val);
Boolean right = helper(root.right, root.val, max);
return left && right;
}
}
复杂度
Time: O(n) : visit each node
Space: O(h): h is the deepest height of such tree