题意:给一个有向图,要求找出一些点,使得这些点中的任意点对,要么可以互通,要么单向可达。
思路:最低只要求单向可达即可,即a->b都可以算进去。
强连通分量内的点肯定是满足要求的,可以全选,但是有多个强连通分量时就不行了,得有取舍。老方法,先缩点,缩完点后是没有环的存在的,所以就是拓扑图了。如果只给一个拓扑图,要求找一条链使得链上的点最多,那么可以用判断拓扑的方式,逐个将入度为0的点删除,且在删除的时候记录下最多有多少个点,删到最后一个点时就出结果了。这样的方法同样适用,只是每个点可能是缩点,而且要将这些缩点内的点数算上去而已。
实现:
(1)求强连通分量。
(2)统计缩点的度数并建(缩点)图。
(3)按判断拓扑图的方式来进行点数的统计。
#include <bits/stdc++.h>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
vector<int> vect[N], g[N]; //原图,缩点后的图
int n, m;
int dfn[N], lowlink[N], scc_no[N], dfn_clock, scc_cnt; //强连通分量必备
stack<int> stac; //强联通分量用栈
unordered_map<int,int> chu[N],ru[N]; //仅仅为了防止重复统计
int r[N]; //出入度
int num[N]; //强联通分量中的点数
int dp[N]; //答案 void DFS(int x)
{
stac.push(x);
dfn[x]=lowlink[x]=++dfn_clock;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
DFS(t);
lowlink[x]=min(lowlink[x],lowlink[t]);
}
else if(!scc_no[t]) lowlink[x]=min(lowlink[x], dfn[t]);
}
if(lowlink[x]==dfn[x])
{
++scc_cnt;
while(true)
{
int t=stac.top();stac.pop();
scc_no[t]=scc_cnt;
if(t==x) break;
}
}
} int cal()
{
memset(dfn,,sizeof(dfn));
memset(lowlink,,sizeof(lowlink));
memset(scc_no,,sizeof(scc_no));
dfn_clock=scc_cnt=;
for(int i=; i<=n; i++) if(!dfn[i]) DFS(i); if(scc_cnt==) return n;
for(int i=; i<=scc_cnt; i++) g[i].clear(),chu[i].clear(),ru[i].clear();
for(int i=; i<=n; i++) //统计度,建图
{
for(int j=; j<vect[i].size(); j++)
{
int t=vect[i][j];
if(scc_no[i]!=scc_no[t])
{
if(!chu[scc_no[i]][scc_no[t]]) //还没出现过
{
chu[scc_no[i]][scc_no[t]]=;
g[scc_no[i]].push_back(scc_no[t]);
}
ru[scc_no[t]][scc_no[i]]=;
}
}
}
deque<int> que;
memset(r,,sizeof(r));
for(int i=; i<=scc_cnt; i++) //统计出入度
{
r[i]=ru[i].size();
if(!r[i]) que.push_back(i);
} memset(num,,sizeof(num));
for(int i=; i<=n; i++) num[scc_no[i]]++; //统计点数 memset(dp,,sizeof(dp)); //按拓扑序来dp
int ans=;
while(!que.empty())
{
int siz=que.size();
for(int i=; i<siz; i++) //所有入度为0的节点
{
int t=que.front();que.pop_front();
ans=max(ans,dp[t]+num[t]);
for(int j=; j<g[t].size(); j++) //每条以t出发的边
{
int d=g[t][j];
r[d]--;
if(!r[d]) que.push_back(d);
dp[d]=max(dp[d],dp[t]+num[t]);
}
}
}
return ans;
} int main()
{
//freopen("input.txt", "r", stdin); int t, a, b;
cin>>t;
while(t--)
{
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++) vect[i].clear();
for(int i=; i<m; i++)
{
scanf("%d%d",&a,&b);
vect[a].push_back(b);
}
cout<<cal()<<endl;
}
return ;
}
AC代码