1、变量交换
大部分编程语言中交换两个变量的值时,不得不引入一个临时变量:
>>> a = 1
>>> b = 2
>>> tmp = a
>>> a = b
>>> b = tmp
pythonic
>>> a, b = b, a
2、循环遍历区间元素
for i in [0, 1, 2, 3, 4, 5]:
(print i)
# 或者
for i in range(6): (print i)
pythonic
for i in xrange(6):
(print i)
xrange 返回的是生成器对象,生成器比列表更加节省内存,不过需要注意的是 xrange 是 python2 中的写法,python3 只有 range 方法,特点和 xrange 是一样的。
3、带有索引位置的集合遍历
遍历集合时如果需要使用到集合的索引位置时,直接对集合迭代是没有索引信息的,普通的方式使用:
colors = ['red', 'green', 'blue', 'yellow']
for i in range(len(colors)): print (i, '--->', colors[i])
pythonic
for i, color in enumerate(colors):
print (i, '--->', color)
4、字符串连接
字符串连接时,普通的方式可以用 +
操作
names = ['raymond', 'rachel', 'matthew', 'roger', 'betty', 'melissa', 'judith', 'charlie']
s = names[0]
for name in names[1:]: s += ', ' + name
print (s)
pythonic
print (', '.join(names))
join 是一种更加高效的字符串连接方式,使用 +
操作时,每执行一次+
操作就会导致在内存中生成一个新的字符串对象,遍历8次有8个字符串生成,造成无谓的内存浪费。而用 join 方法整个过程只会产生一个字符串对象。
5、打开/关闭文件
执行文件操作时,最后一定不能忘记的操作是关闭文件,即使报错了也要 close。普通的方式是在 finnally 块中显示的调用 close 方法。
f = open('data.txt')
try: data = f.read()
finally: f.close()
pythonic
with open('data.txt') as f:
data = f.read()
使用 with 语句,系统会在执行完文件操作后自动关闭文件对象。
6、列表推导式
能够用一行代码简明扼要地解决问题时,绝不要用两行,比如
result = []
for i in range(10): s = i*2
result.append(s)
pythonic
[i*2 for i in xrange(10)]
与之类似的还有生成器表达式、字典推导式,都是很 pythonic 的写法。
7、善用装饰器
装饰器可以把与业务逻辑无关的代码抽离出来,让代码保持干净清爽,而且装饰器还能被多个地方重复利用。比如一个爬虫网页的函数,如果该 URL 曾经被爬过就直接从缓存中获取,否则爬下来之后加入到缓存,防止后续重复爬取。
def web_lookup(url, saved={}):
if url in saved:
return saved[url]
page = urllib.urlopen(url).read()
saved[url] = page
return page
pythonic
import urllib #py2#import urllib.request as urllib
# py3
def cache(func): saved = {}
def wrapper(url):
if url in saved:
return saved[url]
else:
page = func(url)
saved[url] = page
return page
return wrapper
@cache
def web_lookup(url): return urllib.urlopen(url).read()
用装饰器写代码表面上感觉代码量更多,但是它把缓存相关的逻辑抽离出来了,可以给更多的函数调用,这样总的代码量就会少很多,而且业务方法看起来简洁了。
8、合理使用列表
列表对象(list)是一个查询效率高于更新操作的数据结构,比如删除一个元素和插入一个元素时执行效率就非常低,因为还要对剩下的元素进行移动
names = ['raymond', 'rachel', 'matthew', 'roger', 'betty', 'melissa', 'judith', 'charlie']
names.pop(0)
names.insert(0, 'mark')
pythonic
from collections import deque
names = deque(['raymond', 'rachel', 'matthew', 'roger','betty', 'melissa', 'judith', 'charlie'])
names.popleft()
names.appendleft('mark')
deque 是一个双向队列的数据结构,删除元素和插入元素会很快
9、序列解包
p = 'vttalk', 'female', 30, 'python@qq.com'
name = p[0]
gender = p[1]
age = p[2]
email = p[3]
pythonic
name, gender, age, email = p
10、遍历字典的 key 和 value
方法一速度没那么快,因为每次迭代的时候还要重新进行hash查找 key 对应的 value。
方法二遇到字典非常大的时候,会导致内存的消耗增加一倍以上
# 方法一
for k in d: print (k, '--->', d[k])
# 方法二
for k, v in d.items(): print (k, '--->', v)
pythonic
for k, v in d.iteritems():
print (k, '--->', v)
iteritems 返回迭代器对象,可节省更多的内存,不过在 python3 中没有该方法了,只有 items 方法,等值于 iteritems。
11、链式比较操作
age = 18if age > 18 and age < 60:
print("young man")
pythonic
if 18 < age < 60:
print("young man")
理解了链式比较操作,那么你应该知道为什么下面这行代码输出的结果是 False。
>>> False == False == True
False
12、if/else 三目运算
if gender == 'male':
text = '男'else:
text = '女'
pythonic
text = '男' if gender == 'male' else '女'
在类C的语言中都支持三目运算 b?x:y,Python之禅有这样一句话:
“There should be one-- and preferably only one --obvious way to do it. ”。
能够用 if/else 清晰表达逻辑时,就没必要再额外新增一种方式来实现。
13、真值判断
检查某个对象是否为真值时,还显示地与 True 和 False 做比较就显得多此一举,不专业
if attr == True:
do_something()
if len(values) != 0: # 判断列表是否为空
do_something()
pythonic
if attr:
do_something()
if values:
do_something()
真假值对照表:
类型 | False | True |
---|---|---|
布尔 | False (与0等价) | True (与1等价) |
字符串 | ""( 空字符串) | 非空字符串,例如 " ", "blog" |
数值 | 0, 0.0 | 非0的数值,例如:1, 0.1, -1, 2 |
容器 | [], (), | 至少有一个元素的容器对象,例如:[0], (None,), [''] |
None | None | 非None对象 |
14、for/else语句
for else 是 Python 中特有的语法格式,else 中的代码在 for 循环遍历完所有元素之后执行。
flagfound = False
for i in mylist: if i == theflag:
flagfound = True
break
process(i)
if not flagfound: raise ValueError("List argument missing terminal flag.")
pythonic
for i in mylist:
if i == theflag:
break
process(i)
else:
raise ValueError("List argument missing terminal flag.")
15、字符串格式化
s1 = "foofish.net"
s2 = "vttalk"
s3 = "welcome to %s and following %s" % (s1, s2)
pythonic
s3 = "welcome to {blog} and following {wechat}".format(blog="foofish.net", wechat="vttalk")
很难说用 format 比用 %s 的代码量少,但是 format 更易于理解。
“Explicit is better than implicit --- Zen of Python”
16、列表切片
获取列表中的部分元素最先想到的就是用 for 循环根据条件提取元素,这也是其它语言中惯用的手段,而在 Python 中还有强大的切片功能。
items = range(10)
# 奇数
odd_items = []
for i in items: if i % 2 != 0:
odd_items.append(i)
# 拷贝
copy_items = []
for i in items: copy_items.append(i)
pythonic
# 第1到第4个元素的范围区间
sub_items = items[1:4]
# 奇数
odd_items = items[1::2]
#拷贝
copy_items = items[::] 或者 items[:]
列表元素的下标不仅可以用正数表示,还是用负数表示,最后一个元素的位置是 -1,从右往左,依次递减。
--------------------------
| P | y | t | h | o | n |--------------------------
0 1 2 3 4 5
-6 -5 -4 -3 -2 -1--------------------------
17、善用生成器
def fib(n):
a, b = 0, 1
result = []
while b < n:
result.append(b)
a, b = b, a+b
return result
pythonic
def fib(n):
a, b = 0, 1
while a < n:
yield a
a, b = b, a + b
上面是用生成器生成费波那契数列。生成器的好处就是无需一次性把所有元素加载到内存,只有迭代获取元素时才返回该元素,而列表是预先一次性把全部元素加载到了内存。此外用 yield 代码看起来更清晰。
18、获取字典元素
d = {'name': 'foo'}
if d.has_key('name'): print(d['name'])
else: print('unkonw')
pythonic
d.get("name", "unknow")
19、预设字典默认值
通过 key 分组的时候,不得不每次检查 key 是否已经存在于字典中。
data = [('foo', 10), ('bar', 20), ('foo', 39), ('bar', 49)]
groups = {}
for (key, value) in data: if key in groups:
groups[key].append(value)
else:
groups[key] = [value]
pythonic
# 第一种方式
groups = {}
for (key, value) in data: groups.setdefault(key, []).append(value)
# 第二种方式
from collections import defaultdict
groups = defaultdict(list)
for (key, value) in data: groups[key].append(value)
20、字典推导式
在python2.7之前,构建字典对象一般使用下面这种方式,可读性非常差
numbers = [1,2,3]
my_dict = dict([(number,number*2) for number in numbers])
print(my_dict) # {1: 2, 2: 4, 3: 6}
pythonic
numbers = [1, 2, 3]
my_dict = {number: number * 2 for number in numbers}
print(my_dict) # {1: 2, 2: 4, 3: 6}
# 还可以指定过滤条件
my_dict = {number: number * 2 for number in numbers if number > 1}
print(my_dict) # {2: 4, 3: 6}
字典推导式是python2.7新增的特性,可读性增强了很多,类似的还是列表推导式和集合推导式。
21、快速翻转字符串
a = 'I love Python.'
reverse_a = a[::-1]