HDU 5157 Harry and magic string(回文树)

时间:2022-12-17 02:25:59

Harry and magic string

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 223    Accepted Submission(s): 110

Problem Description
Harry got a string T, he wanted to know the number of T’s disjoint palindrome substring pairs. A string is considered to be palindrome if and only if it reads the same backward or forward. For two substrings of T:x=T[a1…b1],y=T[a2…b2](where
a1 is the beginning index of x,b1 is
the ending index of x. a2,b2 as
the same of y), if both x and y are palindromes and b1<a2 or b2<a1 then
we consider (x, y) to be a disjoint palindrome substring pair of T.
 
Input
There are several cases.

For each test case, there is a string T in the first line, which is composed by lowercase characters. The length of T is in the range of [1,100000].
 
Output
For each test case, output one number in a line, indecates the answer.
 
Sample Input
aca
aaaa
 
Sample Output
3
15
求一个字符串中所有不相交的回文串对
回文树,先倒着扫一遍,再正着扫一遍
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
typedef long long int LL;
const int MAX=1e5+5;
char str[MAX];
struct Tree
{
int next[MAX][26];
int fail[MAX];
LL num[MAX];
int len[MAX];
int s[MAX];
int last;
int n;
int p;
int new_node(int x)
{
memset(next[p],0,sizeof(next[p]));
num[p]=0;
len[p]=x;
return p++;
}
void init()
{
p=0;
new_node(0);
new_node(-1);
last=0;
n=0;
s[0]=-1;
fail[0]=1;
}
int get_fail(int x)
{
while(s[n-len[x]-1]!=s[n])
x=fail[x];
return x;
}
LL add(int x)
{
x-='a';
s[++n]=x;
int cur=get_fail(last);
if(!(last=next[cur][x]))
{
int now=new_node(len[cur]+2);
fail[now]=next[get_fail(fail[cur])][x];
next[cur][x]=now;
num[now]=num[fail[now]]+1;
last=now;
}
return num[last];
}
}tree;
LL sum[MAX];
int main()
{
while(scanf("%s",str)!=EOF)
{
int len=strlen(str);
sum[len]=0;
tree.init();
for(int i=len-1;i>=0;i--)
{
sum[i]=sum[i+1]+tree.add(str[i]);
}
tree.init();
LL ans=0;
for(int i=0;i<len;i++)
{
ans+=(LL)tree.add(str[i])*sum[i+1];
}
printf("%lld\n",ans);
}
return 0;
}