HDU 4579 Random Walk (解方程组)

时间:2021-11-29 02:17:59

Random Walk

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 81    Accepted Submission(s): 35

Problem Description
Yuanfang is walking on a chain. The chain has n nodes numbered from 1 to n. Every second, he can move from node i to node j with probability:

HDU 4579 Random Walk (解方程组)

c(i,j) is an element in a given parameter matrix which is n×m. (1 <= c(i, j) <= 9)
Yuanfang wants to know the expectation time for him to walk from node 1 to node n.

 
Input
There are no more than 10 test cases.
In each case, there are two integers n (2 <= n <= 50000), m (1 <= m <= 5), in the first line, meaning that there are n nodes and the parameter matrix is n×m . There are m integers in each of the next n lines which describe the parameter matrix .
The input ends with 0 0.
 
Output
For each case, output the expectation time for Yuanfang to walk from node 1 to node n in one line. The answer should be rounded to 2 digits after decimal point.
 
Sample Input
3 1
1
1
1
5 2
1 2
2 1
3 2
2 3
1 3
0 0
 
Sample Output
6.94
8.75
 
Source
 
 
 
 
 
这题就是列出方程。
 
然后高斯消元解方程。
 
如果是一般的方程,高斯消元需要O(n*n)
 
但是这题的矩阵很特别
 
 
很快就可以消掉了。
用dp[i]表示i到n的期望。
dp[n]=0;
 
 
对于第i个方程,最多只有2*m+1个系数是不为0的。
 
 
 
 
 
 /* **********************************************
Author : kuangbin
Created Time: 2013/8/12 20:28:58
File Name : F:\2013ACM练习\比赛练习\2013杭州邀请赛重现\1004.cpp
*********************************************** */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
using namespace std;
const int MAXN = ;
double c[MAXN][];
double p[MAXN][];
double a[MAXN][];
double b[MAXN];
double dp[MAXN]; int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
while( scanf("%d%d",&n,&m) == )
{
if(n == && m == )break;
for(int i = ;i <= n;i++)
for(int j = ;j <= m;j++)
scanf("%lf",&c[i][j]);
for(int i = ;i < n;i++)
{
double sum = ;
for(int j = ;j <= m;j++)
sum += c[i][j];
double s = ;
for(int j = ;j <= m && i-j >= ;j++)
{
p[i][m-j] = 0.3*c[i][j]/(+sum);
s += p[i][m-j];
}
for(int j = ;j <= m && i+j <= n;j++)
{
p[i][m+j] = 0.7*c[i][j]/(+sum);
s += p[i][m+j];
}
p[i][m] = -s;
b[i] = -;
}
for(int i = ;i <= m+ && i <= n;i++)
a[][i] = p[][m+i-];
for(int i = ;i < n;i++)
{
int end = min(i+m,n);
int start = max(,i-m); for(int j = start;j < i;j++)
if(fabs(p[i][m+j-i]) > 1e-)
{
double t = p[i][m+j-i]/a[j][];
for(int k = ; k <= m+ && j+k- <= n ;k++)
{
p[i][m+j-i+k-] -= t*a[j][k];
}
b[i] -= t*b[j];
}
for(int j = ;j <= end-i+;j++)
a[i][j] = p[i][m+j-]; }
dp[n] = ;
for(int i = n-;i >= ;i--)
{
for(int j = ;j <= m+ && i+j- <= n;j++)
b[i] -= dp[i+j-] * a[i][j];
dp[i] = b[i]/a[i][];
}
printf("%.2f\n",dp[]);
}
return ;
}