The way I use sklearn's svm module now, is to use its defaults. However, its not doing particularly well for my dataset. Is it possible to provide a custom loss function , or a custom kernel? If so, what is the way to write such a function so that it matches with what sklearn's svm expects and how to pass such a function to the trainer?
我现在使用sklearn的svm模块的方法是使用它的默认值。但是,它对我的数据集没有特别好。是否可以提供自定义损失函数,或者自定义内核?如果是这样,如何编写这样一个函数,使它与sklearn的svm期望匹配,以及如何将这个函数传递给trainer?
There is this example of how to do it:
SVM custom kernel
有这样一个示例:SVM自定义内核
code cited here:
代码引用:
def my_kernel(x, y):
"""
We create a custom kernel:
(2 0)
k(x, y) = x ( ) y.T
(0 1)
"""
M = np.array([[2, 0], [0, 1.0]])
return np.dot(np.dot(x, M), y.T)
I'd like to understand the logic behind this kernel. How to choose the kernel matrix? And what exactly is y.T
?
我想理解内核背后的逻辑。如何选择核矩阵?y是什么。T ?
1 个解决方案
#1
1
To answer your question, unless you have a very good idea of why you want to define a custom kernel, I'd stick with the built-ins. They are very fast, flexible, and powerful, and are well-suited to most applications.
要回答您的问题,除非您非常清楚为什么要定义自定义内核,否则我将坚持使用内置内核。它们非常快速、灵活和强大,非常适合大多数应用程序。
That being said, let's go into a bit more detail:
话虽如此,让我们再深入一点:
A Kernel Function is a special kind of measure of similarity between two points. Basically a larger value of the similarity means the points are more similar. The scikit-learn SVM is designed to be able to work with any kernel function. Several kernels built-in (e.g. linear, radial basis function, polynomial, sigmoid) but you can also define your own.
核函数是两个点之间相似度的一种特殊度量。基本上,相似点的较大值意味着这些点更相似。scikit-learn SVM被设计成能够处理任何内核函数。几个内核内置(例如线性、径向基函数、多项式、sigmoid),但您也可以定义自己的内核。
Your custom kernel function should look something like this:
您的自定义内核函数应该如下所示:
def my_kernel(x, y):
"""Compute My Kernel
Parameters
----------
x : array, shape=(N, D)
y : array, shape=(M, D)
input vectors for kernel similarity
Returns
-------
K : array, shape=(N, M)
matrix of similarities between x and y
"""
# ... compute something here ...
return similarity_matrix
The most basic kernel, a linear kernel, would look like this:
最基本的核,线性核,应该是这样的:
def linear_kernel(x, y):
return np.dot(x, y.T)
Equivalently, you can write
同样,您可以编写
def linear_kernel_2(x, y):
M = np.array([[1, 0],
[0, 1]])
return np.dot(x, np.dot(M, y.T))
The matrix M
here defines the so-called inner product space in which the kernel acts. This matrix can be modified to define a new inner product space; the custom function from the example you linked to just modifies M
to effectively double the importance of the first dimension in determining the similarity.
这里的矩阵M定义了内核作用的内积空间。这个矩阵可以修改为定义一个新的内积空间;您链接到的示例中的自定义函数仅修改了M,以有效地使第一个维度在确定相似性方面的重要性增加一倍。
More complicated non-linear modifications are possible as well, but you have to be careful: kernel functions must meet certain requirements (they must satisfy the properties of an inner-product space) or the SVM algorithm will not work correctly.
更复杂的非线性修改也是可能的,但您必须小心:内核函数必须满足某些需求(它们必须满足内部产品空间的属性),否则SVM算法将无法正常工作。
#1
1
To answer your question, unless you have a very good idea of why you want to define a custom kernel, I'd stick with the built-ins. They are very fast, flexible, and powerful, and are well-suited to most applications.
要回答您的问题,除非您非常清楚为什么要定义自定义内核,否则我将坚持使用内置内核。它们非常快速、灵活和强大,非常适合大多数应用程序。
That being said, let's go into a bit more detail:
话虽如此,让我们再深入一点:
A Kernel Function is a special kind of measure of similarity between two points. Basically a larger value of the similarity means the points are more similar. The scikit-learn SVM is designed to be able to work with any kernel function. Several kernels built-in (e.g. linear, radial basis function, polynomial, sigmoid) but you can also define your own.
核函数是两个点之间相似度的一种特殊度量。基本上,相似点的较大值意味着这些点更相似。scikit-learn SVM被设计成能够处理任何内核函数。几个内核内置(例如线性、径向基函数、多项式、sigmoid),但您也可以定义自己的内核。
Your custom kernel function should look something like this:
您的自定义内核函数应该如下所示:
def my_kernel(x, y):
"""Compute My Kernel
Parameters
----------
x : array, shape=(N, D)
y : array, shape=(M, D)
input vectors for kernel similarity
Returns
-------
K : array, shape=(N, M)
matrix of similarities between x and y
"""
# ... compute something here ...
return similarity_matrix
The most basic kernel, a linear kernel, would look like this:
最基本的核,线性核,应该是这样的:
def linear_kernel(x, y):
return np.dot(x, y.T)
Equivalently, you can write
同样,您可以编写
def linear_kernel_2(x, y):
M = np.array([[1, 0],
[0, 1]])
return np.dot(x, np.dot(M, y.T))
The matrix M
here defines the so-called inner product space in which the kernel acts. This matrix can be modified to define a new inner product space; the custom function from the example you linked to just modifies M
to effectively double the importance of the first dimension in determining the similarity.
这里的矩阵M定义了内核作用的内积空间。这个矩阵可以修改为定义一个新的内积空间;您链接到的示例中的自定义函数仅修改了M,以有效地使第一个维度在确定相似性方面的重要性增加一倍。
More complicated non-linear modifications are possible as well, but you have to be careful: kernel functions must meet certain requirements (they must satisfy the properties of an inner-product space) or the SVM algorithm will not work correctly.
更复杂的非线性修改也是可能的,但您必须小心:内核函数必须满足某些需求(它们必须满足内部产品空间的属性),否则SVM算法将无法正常工作。