NYOJ-1070诡异的电梯【Ⅰ】

时间:2021-12-12 12:44:07

这道题是个dp,主要考虑两种情况,刚开始我把状态转移方程写成了dp[i] = min(dp[i-1] + a, dp[i + 1] +b); 后来想想当推到dp[i]的时候,那个dp[i + 1]还没有推出来,所以这种方式推导出来不对,后来又看到dp[i] = min(dp[i-2]的所有情况最小值,dp[i-3]的所有情况值),其中dp[i]表示前 i 层的最小花费总和, dp[i-2]比较好理解,因为不能连着停,所以最近的那个就是dp[i - 2], dp[i - 3]意思就是停在dp[i - 2]的下一层的时候,这两种就是所有的情况了,其中dp[i-3]的时候情况稍多谢,主要中间隔了两层

dp[i - 3]时:

1. dp[i-2]和dp[i-1]层都向上或者都向下走

2. dp[i-2]向下走,dp[i-1]层 向上走

3.dp[i-2]向上走,dp[i-1]向上走

取他们当中最小的情况就是答案,代码如下:

 #include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int dp[];
int flo[];//保存各个楼层有多少人需要停
int main()
{
int kase = ;
int T;
scanf("%d", &T);
while (T--)
{
memset(dp, , sizeof(dp));
memset(flo, , sizeof(flo));
int n, m, a, b;
scanf("%d %d %d %d", &n, &m, &a, &b);
for (int i = ; i < m; i++)
{
int t;
scanf("%d", &t);
flo[t]++;
}
int minn;
for (int i = ; i <= n; i++)
{
//dp[i-2]中的情况,中间那一层向下或者向上,取最小
minn = min(flo[i - ] * a, flo[i - ] * b) + dp[i - ];
//dp[i-3]中情况,两个都向上走或者两个都向下走
int t1 = min(flo[i - ] * a + flo[i - ] * a, flo[i - ] * b + flo[i - ] * b);
//dp[i-3]中的情况,上面的向上走,下面的向下走和下面的向上走,上面的向下走
int t2 = min(flo[i - ] * b + flo[i - ] * a, flo[i - ] * a + flo[i - ] * b);
//取最小
int t3 = min(t1, t2) + dp[i - ];
dp[i] = min(minn, t3);
}
printf("Case %d: %d\n", ++kase, dp[n]);
} return ;
}