bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】

时间:2021-07-12 00:40:52

因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差

以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对值 的和。

转移显然是

\[f[i][j]=min{f[i-1][k]+s[i][j]-s[i][k]}
\]

这样看起来是\( O(n^3) \)的,但是注意到s[i][j]固定

\[f[i][j]=min{f[i-1][k]-s[i][k]}+s[i][j]
\]

这样就可以在处理i-1的时候求出mn[i-1][k]为前k个中最小的f[i-1][k]-s[i][k],所以时间复杂度变成了\( O(n^2) \),空间是可以用滚动数组压到\( O(n) \)的,但是方便起见(懒)就只写了\( O(n^2) \)的

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=2005,inf=(1<<30)-1+(1<<30);
int n,a[N],b[N],f[N][N],s[N][N],mn[N][N],ans=inf;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=b[i]=read();
sort(b+1,b+1+n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
s[i][j]=s[i][j-1]+abs(a[j]-b[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j]=mn[i-1][j]+s[i][j],mn[i][j]=min(f[i][j]-s[i+1][j],mn[i][j-1]);
for(int i=1;i<=n;i++)
ans=min(ans,f[i][n]);
for(int i=n;i>=1;i--)
for(int j=1;j<=n;j++)
f[i][j]=mn[i+1][j]+s[i][j],mn[i][j]=min(f[i][j]-s[i-1][j],mn[i][j-1]);
for(int i=1;i<=n;i++)
ans=min(ans,f[i][n]);
printf("%d\n",ans);
return 0;
}