A Simple Problem with Integers
Time Limit: 5000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4996 Accepted Submission(s): 1576
Problem Description
Let A1, A2, ... , AN be N elements. You need to deal with two kinds of operations. One type of operation is to add a given number to a few numbers in a given interval. The other is to query the value of some element.
Input
There are a lot of test cases.
The first line contains an integer N. (1 <= N <= 50000)
The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)
The third line contains an integer Q. (1 <= Q <= 50000)
Each of the following Q lines represents an operation.
"1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)
"2 a" means querying the value of Aa. (1 <= a <= N)
The first line contains an integer N. (1 <= N <= 50000)
The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)
The third line contains an integer Q. (1 <= Q <= 50000)
Each of the following Q lines represents an operation.
"1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)
"2 a" means querying the value of Aa. (1 <= a <= N)
Output
For each test case, output several lines to answer all query operations.
Sample Input
4
1 1 1 1
14
2 1
2 2
2 3
2 4
1 2 3 1 2
2 1
2 2
2 3
2 4
1 1 4 2 1
2 1
2 2
2 3
2 4
Sample Output
1
1
1
1
1
3
3
1
2
3
4
1
/*
hdu 4267 线段树间隔更新
A Simple Problem with Integers 给你两个操作:
1.在[l,r]中(i-l)%k==0的数加上val
2.单点求值 看到题想到的是做过的一个间隔求和的题目,但是这题的k是不固定的
所以并不适用 对于每个数,如果用k的余数将它们标记,可以分成k组,所有k的情况总共55种,
所以用add[55]来保存新添加的值.
然后在查找pos的时候,加上对于每个k而言pos所属组的值即可 hhh-2016-03-26 13:47:26
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
int n,qw;
int k;
const int maxn = 50050;
int po[15][15];
int a[maxn];
struct node
{
int l,r;
int sum;
int add[56];
int mid()
{
return (l+r)>>1;
}
} tree[maxn*5]; void push_up(int i)
{ } void build(int l,int r,int i)
{
tree[i].l = l;
tree[i].r = r;
tree[i].sum = 0;
memset(tree[i].add,0,sizeof(tree[i].add));
if(l == r)
return ; int mid = tree[i].mid();
build(l,mid,lson);
build(mid+1,r,rson);
push_up(i);
} void push_down(int i)
{
if(tree[i].sum)
{
tree[lson].sum += tree[i].sum;
tree[rson].sum += tree[i].sum; for(int j = 0; j < 55; j++)
{
tree[lson].add[j]+= tree[i].add[j];
tree[rson].add[j]+= tree[i].add[j];
tree[i].add[j] = 0;
}
tree[i].sum = 0;
}
}
void Insert(int i,int l,int r,int val,int k,int t)
{
if(tree[i].l >= l && tree[i].r <=r )
{
tree[i].sum += val;
tree[i].add[po[k][t]] += val;
return ;
}
int mid = tree[i].mid();
push_down(i);
if(l <= mid)
Insert(lson,l,r,val,k,t);
if(r > mid)
Insert(rson,l,r,val,k,t);
push_up(i);
} int query(int i,int pos)
{
//if(tree[i].l >= l && tree[i].r <= r)
if(tree[i].l == tree[i].r)
{
int tmp = 0;
for(int j = 1;j <= 10;j++)
tmp += tree[i].add[po[j][pos%j]];
return tmp;
}
push_down(i);
int mid = tree[i].mid(); if(pos <= mid)
return query(lson,pos);
if(pos > mid)
return query(rson,pos);
} int main()
{
int T,cas = 1,cnt = 0;
for(int i = 1; i <= 10; i++)
{
for(int j = 0; j < i; j++)
po[i][j] = cnt++;
} while(scanf("%d",&n) != EOF)
{
for(int i = 1;i <= n;i++)
scanf("%d",&a[i]);
build(1,n,1); int l,r,q;
int val,k;
scanf("%d",&q);
for(int i = 1; i <=q; i++)
{
int op;
scanf("%d",&op);
if(op == 1)
{
scanf("%d%d%d%d",&l,&r,&k,&val);
Insert(1,l,r,val,k,l%k);
}
else
{
scanf("%d",&l);
printf("%d\n",query(1,l)+a[l]);
}
}
}
return 0;
}