Problem Description
ice_cream's world is a rich country, it has many fertile lands. Today, the queen of ice_cream wants award land to diligent ACMers. So there are some watchtowers are set up, and wall between watchtowers be build, in order to partition the ice_cream’s world. But how many ACMers at most can be awarded by the queen is a big problem. One wall-surrounded land must be given to only one ACMer and no walls are crossed, if you can help the queen solve this problem, you will be get a land.
Input
In the case, first two integers N, M (N<=1000, M<=10000) is represent the number of watchtower and the number of wall. The watchtower numbered from 0 to N-1. Next following M lines, every line contain two integers A, B mean between A and B has a wall(A and B are distinct). Terminate by end of file.
Output
Output the maximum number of ACMers who will be awarded.
One answer one line.
One answer one line.
Sample Input
8 10
0 1
1 2
1 3
2 4
3 4
0 5
5 6
6 7
3 6
4 7
0 1
1 2
1 3
2 4
3 4
0 5
5 6
6 7
3 6
4 7
Sample Output
3
Source
分析:并查集成环问题。。关于并查集理解了为什么能判断成环,首先并查集我们知道能够判断两个点是否属于同一个集合,并且将不属于同一个集合中的点归纳到同一个集合中去。。。
这个图有环是已知的吧,但是要用代码来判断,就很复杂,首先我们把每个点看成独立的集合{0} ,{1}, {2}, 然后规定如果两个点之间有边相连,如果这两个点不属于同一个集合,那就将他们所属的结合合并,看边0-1,直接将这两个点代表的集合合并{0, 1}, 其中让1来当父节点, 看边1-2, 它们分别属于不同的集合,合并集合之后是{1, 2},让2来当父节点,依照这种逻辑关系,0的祖先节点就是2, 然后在看边0-2,他们属于一个集合,因为他们有着共同的祖先2,
这就说明0-2之间在没有0-2这条边之前已经连通了,如果在加上这条边的话那从0到2就有两条路径可达,就说明存在一个环了。。。这就是并查集所谓的成环的实质。。。
// /*并查集*/
// int prev[1000]; // int find(int x){//查找我的掌门
// int r=x; //委托r去找掌门
// while(prev[r]!=r){//如果r的上级不是自己(也就是说他找到的大侠不是掌门)
// r=prev[r];//r就接着找他的掌门,直到到掌门为止
// }
// return r;//掌门驾到~~~~
// } // void join(int x,int y){//联通
// int fx=find(x);
// int fy=find(y); // if(fx!=fy){
// prev[fx]=fy;
// } // }
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = 1e3+;
int pre[maxn];
int cnt=; int Find(int x){
int u=x;
while(u!=pre[u]){
u=pre[u];
}
int i=x,j;
while(pre[i]!=u){/*压缩路径*/
j=pre[i];
pre[i]=u;
i=j;
}
return u;
} void mix(int u,int v){
int fu=Find(u);
int fv=Find(v);
if(fu!=fv){
pre[fu]=fv;
}
else{
cnt++;
}
} int main(int argc, char const *argv[])
{
int n,m;
while(~scanf("%d %d",&n,&m)){
cnt=;
for( int i=; i<n; i++ ){/*初始化*/
pre[i]=i;
}
for( int i=; i<m; i++ ){
int a,b;
cin>>a>>b;
mix(a,b);
}
cout<<cnt<<endl;
}
return ;
}